000 04626nam a22005895i 4500
001 978-3-031-46914-5
003 DE-He213
005 20240730201650.0
007 cr nn 008mamaa
008 231030s2023 sz | s |||| 0|eng d
020 _a9783031469145
_9978-3-031-46914-5
024 7 _a10.1007/978-3-031-46914-5
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aShape in Medical Imaging
_h[electronic resource] :
_bInternational Workshop, ShapeMI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings /
_cedited by Christian Wachinger, Beatriz Paniagua, Shireen Elhabian, Jianning Li, Jan Egger.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2023.
300 _aXI, 302 p. 141 illus., 137 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v14350
505 0 _aAnatomy Completor: A Multi-class Completion Framework for 3D Anatomy Reconstruction -- C3Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in Colonoscopy -- Anatomy-Aware Masking for Inpainting in Medical Imaging -- Particle-Based Shape Modeling for Arbitrary Regions-of-Interest -- Optimal coronary artery segmentation based on transfer learning and UNet architecture -- Unsupervised Learning of Cortical Surface Registration using Spherical Harmonics -- Unsupervised correspondence with combined geometric learning and imaging for radiotherapy applications -- ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images -- Body Fat Estimation from Surface Meshes using Graph Neural Networks -- Geometric Learning-Based Transformer Network for Estimation of Segmentation Errors -- On the Localization of Ultrasound Image Slices within Point Distribution Models -- FSJP-Net: Foreground and Shape Joint Perception Network for Glomerulus Detection -- Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models -- Muscle volume quantification: guiding transformers with anatomical priors -- Geodesic Logistic Analysis of Lumbar Spine Intervertebral Disc Shapes in Supine and Standing Positions -- SlicerSALT: From medical images to quantitative insights of anatomy -- Predicting Shape Development: A Riemannian Method -- AReg IOS: Automatic Registration on IntraOralScans -- Modeling Longitudinal Optical Coherence Tomography Images for Monitoring and Analysis of Glaucoma Progression -- IcoConv : Explainable brain cortical surface analysis for ASD classification -- DeCA: A Dense Correspondence Analysis Toolkit for Shape Analysis -- 3D Shape Analysis of Scoliosis -- SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction. .
520 _aThis volume comprises the proceedings of the International Workshop, ShapeMI 2023, which took place alongside MICCAI 2023 on October 8, 2023, in Vancouver, British Columbia, Canada. The 23 selected full papers deal with all aspects of leading methods and applications for advanced shape analysis and geometric learning in medical imaging.
650 0 _aComputer vision.
_9168207
650 0 _aMachine learning.
_91831
650 0 _aComputers, Special purpose.
_946653
650 1 4 _aComputer Vision.
_9168208
650 2 4 _aMachine Learning.
_91831
650 2 4 _aSpecial Purpose and Application-Based Systems.
_946654
700 1 _aWachinger, Christian.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9168209
700 1 _aPaniagua, Beatriz.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9168210
700 1 _aElhabian, Shireen.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9168211
700 1 _aLi, Jianning.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9168212
700 1 _aEgger, Jan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9168213
710 2 _aSpringerLink (Online service)
_9168214
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031469138
776 0 8 _iPrinted edition:
_z9783031469152
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v14350
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-46914-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c96650
_d96650