000 | 05502nam a22006015i 4500 | ||
---|---|---|---|
001 | 978-3-540-31578-0 | ||
003 | DE-He213 | ||
005 | 20240730194747.0 | ||
007 | cr nn 008mamaa | ||
008 | 100714s2005 gw | s |||| 0|eng d | ||
020 |
_a9783540315780 _9978-3-540-31578-0 |
||
024 | 7 |
_a10.1007/b136985 _2doi |
|
050 | 4 | _aQ337.5 | |
050 | 4 | _aTK7882.P3 | |
072 | 7 |
_aUYQP _2bicssc |
|
072 | 7 |
_aCOM016000 _2bisacsh |
|
072 | 7 |
_aUYQP _2thema |
|
082 | 0 | 4 |
_a006.4 _223 |
245 | 1 | 0 |
_aMultiple Classifier Systems _h[electronic resource] : _b6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005, Proceedings / _cedited by Nikunj C. Oza, Robi Polikar, Josef Kittler, Fabio Roli. |
250 | _a1st ed. 2005. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2005. |
|
300 |
_aXII, 432 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aImage Processing, Computer Vision, Pattern Recognition, and Graphics, _x3004-9954 ; _v3541 |
|
505 | 0 | _aFuture Directions -- Semi-supervised Multiple Classifier Systems: Background and Research Directions -- Boosting -- Boosting GMM and Its Two Applications -- Boosting Soft-Margin SVM with Feature Selection for Pedestrian Detection -- Observations on Boosting Feature Selection -- Boosting Multiple Classifiers Constructed by Hybrid Discriminant Analysis -- Combination Methods -- Decoding Rules for Error Correcting Output Code Ensembles -- A Probability Model for Combining Ranks -- EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks -- Mixture of Gaussian Processes for Combining Multiple Modalities -- Dynamic Classifier Integration Method -- Recursive ECOC for Microarray Data Classification -- Using Dempster-Shafer Theory in MCF Systems to Reject Samples -- Multiple Classifier Fusion Performance in Networked Stochastic Vector Quantisers -- On Deriving the Second-Stage Training Set for Trainable Combiners -- Using Independence Assumption to Improve Multimodal Biometric Fusion -- Design Methods -- Half-Against-Half Multi-class Support Vector Machines -- Combining Feature Subsets in Feature Selection -- ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments -- Using Decision Tree Models and Diversity Measures in the Selection of Ensemble Classification Models -- Ensembles of Classifiers from Spatially Disjoint Data -- Optimising Two-Stage Recognition Systems -- Design of Multiple Classifier Systems for Time Series Data -- Ensemble Learning with Biased Classifiers: The Triskel Algorithm -- Cluster-Based Cumulative Ensembles -- Ensemble of SVMs for Incremental Learning -- Performance Analysis -- Design of a New Classifier Simulator -- Evaluation of Diversity Measures for Binary Classifier Ensembles -- Which Is the Best Multiclass SVM Method? An Empirical Study -- Over-Fitting in Ensembles of Neural Network Classifiers Within ECOC Frameworks -- Between Two Extremes: Examining Decompositions of the Ensemble Objective Function -- Data Partitioning Evaluation Measures for Classifier Ensembles -- Dynamics of Variance Reduction in Bagging and Other Techniques Based on Randomisation -- Ensemble Confidence Estimates Posterior Probability -- Applications -- Using Domain Knowledge in the Random Subspace Method: Application to the Classification of Biomedical Spectra -- An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble -- Speaker Verification Using Adapted User-Dependent Multilevel Fusion -- Multi-modal Person Recognition for Vehicular Applications -- Using an Ensemble of Classifiers to Audit a Production Classifier -- Analysis and Modelling of Diversity Contribution to Ensemble-Based Texture Recognition Performance -- Combining Audio-Based and Video-Based Shot Classification Systems for News Videos Segmentation -- Designing Multiple Classifier Systems for Face Recognition -- Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data. | |
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 0 |
_aComputer vision. _9157927 |
|
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer science. _99832 |
|
650 | 1 | 4 |
_aAutomated Pattern Recognition. _931568 |
650 | 2 | 4 |
_aComputer Vision. _9157928 |
650 | 2 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aTheory of Computation. _9157929 |
700 | 1 |
_aOza, Nikunj C. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9157930 |
|
700 | 1 |
_aPolikar, Robi. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9157931 |
|
700 | 1 |
_aKittler, Josef. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9157932 |
|
700 | 1 |
_aRoli, Fabio. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9157933 |
|
710 | 2 |
_aSpringerLink (Online service) _9157934 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783540263067 |
776 | 0 | 8 |
_iPrinted edition: _z9783540812203 |
830 | 0 |
_aImage Processing, Computer Vision, Pattern Recognition, and Graphics, _x3004-9954 ; _v3541 _9157935 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/b136985 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c95315 _d95315 |