000 06384nam a22006495i 4500
001 978-3-642-16108-7
003 DE-He213
005 20240730190452.0
007 cr nn 008mamaa
008 100831s2010 gw | s |||| 0|eng d
020 _a9783642161087
_9978-3-642-16108-7
024 7 _a10.1007/978-3-642-16108-7
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aAlgorithmic Learning Theory
_h[electronic resource] :
_b21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings /
_cedited by Marcus Hutter, Frank Stephan, Vladimir Vovk, Thomas Zeugmann.
250 _a1st ed. 2010.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2010.
300 _aXIII, 421 p. 45 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v6331
505 0 _aEditors' Introduction -- Editors' Introduction -- Invited Papers -- Towards General Algorithms for Grammatical Inference -- The Blessing and the Curse of the Multiplicative Updates -- Discovery of Abstract Concepts by a Robot -- Contrast Pattern Mining and Its Application for Building Robust Classifiers -- Optimal Online Prediction in Adversarial Environments -- Regular Contributions -- An Algorithm for Iterative Selection of Blocks of Features -- Bayesian Active Learning Using Arbitrary Binary Valued Queries -- Approximation Stability and Boosting -- A Spectral Approach for Probabilistic Grammatical Inference on Trees -- PageRank Optimization in Polynomial Time by Stochastic Shortest Path Reformulation -- Inferring Social Networks from Outbreaks -- Distribution-Dependent PAC-Bayes Priors -- PAC Learnability of a Concept Class under Non-atomic Measures: A Problem by Vidyasagar -- A PAC-Bayes Bound for Tailored Density Estimation -- Compressed Learning with Regular Concept -- A Lower Bound for Learning Distributions Generated by Probabilistic Automata -- Lower Bounds on Learning Random Structures with Statistical Queries -- Recursive Teaching Dimension, Learning Complexity, and Maximum Classes -- Toward a Classification of Finite Partial-Monitoring Games -- Switching Investments -- Prediction with Expert Advice under Discounted Loss -- A Regularization Approach to Metrical Task Systems -- Solutions to Open Questions for Non-U-Shaped Learning with Memory Limitations -- Learning without Coding -- Learning Figures with the Hausdorff Metric by Fractals -- Inductive Inference of Languages from Samplings -- Optimality Issues of Universal Greedy Agents with Static Priors -- Consistency of Feature Markov Processes -- Algorithms for Adversarial Bandit Problems with Multiple Plays -- Online Multiple KernelLearning: Algorithms and Mistake Bounds -- An Identity for Kernel Ridge Regression.
520 _aThis volume contains the papers presented at the 21st International Conf- ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra, Australia, October 6-8, 2010. The conference was co-located with the 13th - ternational Conference on Discovery Science (DS 2010) and with the Machine Learning Summer School, which was held just before ALT 2010. The tech- cal program of ALT 2010, contained 26 papers selected from 44 submissions and ?ve invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2010 was dedicated to the theoretical foundations of machine learning and took place on the campus of the Australian National University, Canberra, Australia. ALT provides a forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as inductive inference, universal prediction, teaching models, grammatical inference, formal languages, inductive logic programming, query learning, complexity of learning, on-line learning and relative loss bounds, semi-supervised and unsupervised learning, clustering,activelearning,statisticallearning,supportvectormachines,Vapnik- Chervonenkisdimension,probablyapproximatelycorrectlearning,Bayesianand causal networks, boosting and bagging, information-based methods, minimum descriptionlength,Kolmogorovcomplexity,kernels,graphlearning,decisiontree methods, Markov decision processes, reinforcement learning, and real-world - plications of algorithmic learning theory. DS 2010 was the 13th International Conference on Discovery Science and focused on the development and analysis of methods for intelligent data an- ysis, knowledge discovery and machine learning, as well as their application to scienti?c knowledge discovery. As is the tradition, it wasco-located and held in parallel with Algorithmic Learning Theory.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer programming.
_94169
650 0 _aMachine theory.
_9142593
650 0 _aAlgorithms.
_93390
650 0 _aComputer science.
_99832
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aProgramming Techniques.
_9142594
650 2 4 _aFormal Languages and Automata Theory.
_9142595
650 2 4 _aAlgorithms.
_93390
650 2 4 _aTheory of Computation.
_9142596
650 2 4 _aComputer Science Logic and Foundations of Programming.
_942203
700 1 _aHutter, Marcus.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9142597
700 1 _aStephan, Frank.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9142598
700 1 _aVovk, Vladimir.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9142599
700 1 _aZeugmann, Thomas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9142600
710 2 _aSpringerLink (Online service)
_9142601
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783642161070
776 0 8 _iPrinted edition:
_z9783642161094
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v6331
_9142602
856 4 0 _uhttps://doi.org/10.1007/978-3-642-16108-7
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c93267
_d93267