000 03922nam a22006135i 4500
001 978-3-319-23708-4
003 DE-He213
005 20240730190445.0
007 cr nn 008mamaa
008 151226s2015 sz | s |||| 0|eng d
020 _a9783319237084
_9978-3-319-23708-4
024 7 _a10.1007/978-3-319-23708-4
_2doi
050 4 _aQA267-268.5
072 7 _aUYA
_2bicssc
072 7 _aCOM014000
_2bisacsh
072 7 _aUYA
_2thema
082 0 4 _a005.131
_223
245 1 0 _aInductive Logic Programming
_h[electronic resource] :
_b24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers /
_cedited by Jesse Davis, Jan Ramon.
250 _a1st ed. 2015.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aX, 211 p. 62 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v9046
505 0 _aReframing on Relational Data -- Inductive Learning using Constraint-driven Bias -- Nonmonotonic Learning in Large Biological Networks -- Construction of Complex Aggregates with Random Restart Hill-Climbing -- Logical minimisation of meta-rules within Meta-Interpretive Learning -- Goal and plan recognition via parse trees using prefix and infix probability computation -- Effectively creating weakly labeled training examples via approximate domain knowledge -- Learning Prime Implicant Conditions From Interpretation Transition -- Statistical Relational Learning for Handwriting Recognition -- The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions -- Towards machine learning of predictive models from ecological data -- PageRank, ProPPR, and Stochastic Logic Programs -- Complex aggregates over clusters of elements -- On the Complexity of Frequent Subtree Mining in Very Simple Structures.
520 _aThis book constitutes the thoroughly refereed post-conference proceedings of the 24th International Conference on Inductive Logic Programming, ILP 2014, held in Nancy, France, in September 2014. The 14 revised papers presented were carefully reviewed and selected from 41 submissions. The papers focus on topics such as the inducing of logic programs, learning from data represented with logic, multi-relational machine learning, learning from graphs, and applications of these techniques to important problems in fields like bioinformatics, medicine, and text mining.
650 0 _aMachine theory.
_9142556
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer programming.
_94169
650 0 _aApplication software.
_9142557
650 0 _aComputer science.
_99832
650 1 4 _aFormal Languages and Automata Theory.
_9142558
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aProgramming Techniques.
_9142559
650 2 4 _aComputer and Information Systems Applications.
_9142560
650 2 4 _aComputer Science Logic and Foundations of Programming.
_942203
650 2 4 _aTheory of Computation.
_9142561
700 1 _aDavis, Jesse.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9142562
700 1 _aRamon, Jan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9142563
710 2 _aSpringerLink (Online service)
_9142564
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319237077
776 0 8 _iPrinted edition:
_z9783319237091
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v9046
_9142565
856 4 0 _uhttps://doi.org/10.1007/978-3-319-23708-4
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c93263
_d93263