000 | 04131nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-031-48956-3 | ||
003 | DE-He213 | ||
005 | 20240730171824.0 | ||
007 | cr nn 008mamaa | ||
008 | 240412s2024 sz | s |||| 0|eng d | ||
020 |
_a9783031489563 _9978-3-031-48956-3 |
||
024 | 7 |
_a10.1007/978-3-031-48956-3 _2doi |
|
050 | 4 | _aQ336 | |
072 | 7 |
_aUN _2bicssc |
|
072 | 7 |
_aCOM021000 _2bisacsh |
|
072 | 7 |
_aUN _2thema |
|
082 | 0 | 4 |
_a005.7 _223 |
100 | 1 |
_aIgual, Laura. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _9100532 |
|
245 | 1 | 0 |
_aIntroduction to Data Science _h[electronic resource] : _bA Python Approach to Concepts, Techniques and Applications / _cby Laura Igual, Santi Seguí. |
250 | _a2nd ed. 2024. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2024. |
|
300 |
_aXIV, 246 p. 82 illus., 78 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aUndergraduate Topics in Computer Science, _x2197-1781 |
|
505 | 0 | _a1. Introduction to Data Science -- 2. Toolboxes for Data Scientists -- 3. Descriptive statistics -- 4. Statistical Inference -- 5. Supervised Learning -- 6. Regression Analysis -- 7. Unsupervised Learning -- 8. Network Analysis -- 9. Recommender Systems -- 10. Statistical Natural Language Processing for Sentiment Analysis -- 11. Parallel Computing. | |
520 | _aThis textbook presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses. Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Associate Professor at the same institution. The authors wish to mention that some chapters were co-written by Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera. | ||
650 | 0 |
_aArtificial intelligence _xData processing. _921787 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aPython (Computer program language). _96666 |
|
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 1 | 4 |
_aData Science. _934092 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _9100534 |
650 | 2 | 4 |
_aPython. _934340 |
650 | 2 | 4 |
_aArtificial Intelligence. _93407 |
700 | 1 |
_aSeguí, Santi. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _9100536 |
|
710 | 2 |
_aSpringerLink (Online service) _9100538 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031489556 |
776 | 0 | 8 |
_iPrinted edition: _z9783031489570 |
830 | 0 |
_aUndergraduate Topics in Computer Science, _x2197-1781 _9100540 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-48956-3 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
942 | _cEBK | ||
999 |
_c87834 _d87834 |