000 03490nam a22005415i 4500
001 978-981-99-8413-8
003 DE-He213
005 20240730171308.0
007 cr nn 008mamaa
008 240217s2024 si | s |||| 0|eng d
020 _a9789819984138
_9978-981-99-8413-8
024 7 _a10.1007/978-981-99-8413-8
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aGenetic Programming Theory and Practice XX
_h[electronic resource] /
_cedited by Stephan Winkler, Leonardo Trujillo, Charles Ofria, Ting Hu.
250 _a1st ed. 2024.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2024.
300 _aXV, 337 p. 107 illus., 94 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGenetic and Evolutionary Computation,
_x1932-0175
505 0 _aChapter 1. Symbolic Regression and Real World Applications -- Chapter 2. Program Synthesis with GP plus others -- Chapter 3. Machine learning and GP -- Chapter 4. Grammatical Evolution and Medical Applications of GP -- Chapter 5. Evolved Analytics LLC, Efficient Real-World Problem Solving with Genetic Programming -- Chapter 6. Automatic Machine Learning with GP -- Chapter 7. GP and Cybersecurity -- Transfer Learning and GP -- Chapter 8. Selection Mechanisms in Genetic Programming -- Chapter 9. Evolutionary Computation and Machine Learning.
520 _aGenetic Programming Theory and Practice brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year's book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine, and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the- art in GP research.
650 0 _aArtificial intelligence.
_93407
650 1 4 _aArtificial Intelligence.
_93407
700 1 _aWinkler, Stephan.
_eeditor.
_0(orcid)
_10000-0002-5196-4294
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_997920
700 1 _aTrujillo, Leonardo.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_997922
700 1 _aOfria, Charles.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_997923
700 1 _aHu, Ting.
_eeditor.
_0(orcid)
_10000-0001-6382-0602
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_997924
710 2 _aSpringerLink (Online service)
_997925
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789819984121
776 0 8 _iPrinted edition:
_z9789819984145
776 0 8 _iPrinted edition:
_z9789819984152
830 0 _aGenetic and Evolutionary Computation,
_x1932-0175
_997927
856 4 0 _uhttps://doi.org/10.1007/978-981-99-8413-8
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cEBK
999 _c87497
_d87497