000 03710nam a22005535i 4500
001 978-3-031-79709-5
003 DE-He213
005 20240730164143.0
007 cr nn 008mamaa
008 220601s2021 sz | s |||| 0|eng d
020 _a9783031797095
_9978-3-031-79709-5
024 7 _a10.1007/978-3-031-79709-5
_2doi
050 4 _aT1-995
072 7 _aTBC
_2bicssc
072 7 _aTEC000000
_2bisacsh
072 7 _aTBC
_2thema
082 0 4 _a620
_223
100 1 _aLuo, Albert.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_982415
245 1 0 _aPolynomial Functional Dynamical Systems
_h[electronic resource] /
_cby Albert Luo.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXIII, 151 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mechanical Engineering,
_x2573-3176
505 0 _aPreface -- Linear Functional Systems -- Quadratic Nonlinear Functional Systems -- Cubic Nonlinear Functional Systems -- Quartic Nonlinear Functional Systems -- (2??)th-Degree Polynomial Functional Systems -- (2??+1)th-Degree Polynomial Functional Systems -- Author's Biography.
520 _aThe book is about the global stability and bifurcation of equilibriums in polynomial functional systems. Appearing and switching bifurcations of simple and higher-order equilibriums in the polynomial functional systems are discussed, and such bifurcations of equilibriums are not only for simple equilibriums but for higher-order equilibriums. The third-order sink and source bifurcations for simple equilibriums are presented in the polynomial functional systems. The third-order sink and source switching bifurcations for saddle and nodes are also presented, and the fourth-order upper-saddle and lower-saddle switching and appearing bifurcations are presented for two second-order upper-saddles and two second-order lower-saddles, respectively. In general, the (2���� + 1)th-order sink and source switching bifurcations for (2��������)th-order saddles and (2�������� +1)-order nodes are also presented, and the (2����)th-order upper-saddle and lower-saddle switching and appearing bifurcations arepresented for (2��������)th-order upper-saddles and (2��������)th-order lower-saddles (����, ���� = 1,2,...). The vector fields in nonlinear dynamical systems are polynomial functional. Complex dynamical systems can be constructed with polynomial algebraic structures, and the corresponding singularity and motion complexity can be easily determined.
650 0 _aEngineering.
_99405
650 0 _aElectrical engineering.
_982416
650 0 _aEngineering design.
_93802
650 0 _aMicrotechnology.
_928219
650 0 _aMicroelectromechanical systems.
_96063
650 1 4 _aTechnology and Engineering.
_982417
650 2 4 _aElectrical and Electronic Engineering.
_982418
650 2 4 _aEngineering Design.
_93802
650 2 4 _aMicrosystems and MEMS.
_982419
710 2 _aSpringerLink (Online service)
_982420
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031797101
776 0 8 _iPrinted edition:
_z9783031797088
776 0 8 _iPrinted edition:
_z9783031797118
830 0 _aSynthesis Lectures on Mechanical Engineering,
_x2573-3176
_982421
856 4 0 _uhttps://doi.org/10.1007/978-3-031-79709-5
912 _aZDB-2-SXSC
942 _cEBK
999 _c85350
_d85350