000 03272nam a22005295i 4500
001 978-3-031-02436-8
003 DE-He213
005 20240730163935.0
007 cr nn 008mamaa
008 220601s2021 sz | s |||| 0|eng d
020 _a9783031024368
_9978-3-031-02436-8
024 7 _a10.1007/978-3-031-02436-8
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
072 7 _aPB
_2thema
082 0 4 _a510
_223
100 1 _aMcEachern, Andrew.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_981290
245 1 0 _aMathematical Problem Factories
_h[electronic resource] :
_bAlmost Endless Problem Generation /
_cby Andrew McEachern, Daniel Ashlock.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXVII, 147 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
505 0 _aPreface -- Acknowledgments -- What Are Problem Factories? -- Sequence Extension Problems -- Basic Analytic Geometry Problems -- Problems Using Whole Numbers -- Diagrammatic Representations of Linear Systems -- Polyomino Tiling Puzzles -- Problems-Based on Graph Theory -- The Road Ahead: Other Problem Factories -- Authors' Biographies .
520 _aA problem factory consists of a traditional mathematical analysis of a type of problem that describes many, ideally all, ways that the problems of that type can be cast in a fashion that allows teachers or parents to generate problems for enrichment exercises, tests, and classwork. Some problem factories are easier than others for a teacher or parent to apply, so we also include banks of example problems for users. This text goes through the definition of a problem factory in detail and works through many examples of problem factories. It gives banks of questions generated using each of the examples of problem factories, both the easy ones and the hard ones. This text looks at sequence extension problems (what number comes next?), basic analytic geometry, problems on whole numbers, diagrammatic representations of systems of equations, domino tiling puzzles, and puzzles based on combinatorial graphs. The final chapter previews other possible problem factories.
650 0 _aMathematics.
_911584
650 0 _aStatisticsĀ .
_931616
650 0 _aEngineering mathematics.
_93254
650 1 4 _aMathematics.
_911584
650 2 4 _aStatistics.
_914134
650 2 4 _aEngineering Mathematics.
_93254
700 1 _aAshlock, Daniel.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_981291
710 2 _aSpringerLink (Online service)
_981292
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031002823
776 0 8 _iPrinted edition:
_z9783031013089
776 0 8 _iPrinted edition:
_z9783031035647
830 0 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
_981293
856 4 0 _uhttps://doi.org/10.1007/978-3-031-02436-8
912 _aZDB-2-SXSC
942 _cEBK
999 _c85148
_d85148