000 03764nam a22005415i 4500
001 978-3-031-01766-7
003 DE-He213
005 20240730163717.0
007 cr nn 008mamaa
008 220601s2020 sz | s |||| 0|eng d
020 _a9783031017667
_9978-3-031-01766-7
024 7 _a10.1007/978-3-031-01766-7
_2doi
050 4 _aTK7867-7867.5
072 7 _aTJFC
_2bicssc
072 7 _aTEC008010
_2bisacsh
072 7 _aTJFC
_2thema
082 0 4 _a621.3815
_223
100 1 _aSze, Vivienne.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980111
245 1 0 _aEfficient Processing of Deep Neural Networks
_h[electronic resource] /
_cby Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXXI, 254 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Computer Architecture,
_x1935-3243
505 0 _aPreface -- Acknowledgments -- Introduction -- Overview of Deep Neural Networks -- Key Metrics and Design Objectives -- Kernel Computation -- Designing DNN Accelerators -- Operation Mapping on Specialized Hardware -- Reducing Precision -- Exploiting Sparsity -- Designing Efficient DNN Models -- Advanced Technologies -- Conclusion -- Bibliography -- Authors' Biographies.
520 _aThis book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics-such as energy-efficiency, throughput, and latency-without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
650 0 _aElectronic circuits.
_919581
650 0 _aMicroprocessors.
_980112
650 0 _aComputer architecture.
_93513
650 1 4 _aElectronic Circuits and Systems.
_980113
650 2 4 _aProcessor Architectures.
_980114
700 1 _aChen, Yu-Hsin.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980115
700 1 _aYang, Tien-Ju.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980116
700 1 _aEmer, Joel S.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980117
710 2 _aSpringerLink (Online service)
_980118
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031000638
776 0 8 _iPrinted edition:
_z9783031006388
776 0 8 _iPrinted edition:
_z9783031028946
830 0 _aSynthesis Lectures on Computer Architecture,
_x1935-3243
_980119
856 4 0 _uhttps://doi.org/10.1007/978-3-031-01766-7
912 _aZDB-2-SXSC
942 _cEBK
999 _c84901
_d84901