000 02401nam a2200373 i 4500
001 CR9781139095143
003 UkCbUP
005 20240730160757.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 110608s2016||||enk o ||1 0|eng|d
020 _a9781139095143 (ebook)
020 _z9781107019669 (hardback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 4 _aQA374
_b.R63 2016
082 0 4 _a515.353
_223
100 1 _aRobinson, James C.
_q(James Cooper),
_d1969-
_eauthor.
_974658
245 1 4 _aThe three-dimensional Navier-Stokes equations :
_bclassical theory /
_cJames C. Robinson, José L. Rodrigo, Witold Sadowski.
264 1 _aCambridge :
_bCambridge University Press,
_c2016.
300 _a1 online resource (xiv, 471 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aCambridge studies in advanced mathematics ;
_v157
500 _aTitle from publisher's bibliographic system (viewed on 07 Sep 2016).
520 _aA rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier-Stokes equations, this book provides self-contained proofs of someof the most significant results in the area, many of which can only be found in researchpapers. Highlights include the existence of global-in-time Leray-Hopf weak solutionsand the local existence of strong solutions; the conditional local regularity results ofSerrin and others; and the partial regularity results of Caffarelli, Kohn, and Nirenberg.Appendices provide background material and proofs of some 'standard results' thatare hard to find in the literature. A substantial number of exercises are included, with fullsolutions given at the end of the book. As the only introductory text on the topic to treatall of the mainstream results in detail, this book is an ideal text for a graduate course ofone or two semesters. It is also a useful resource for anyone working in mathematicalfluid dynamics.
650 0 _aNavier-Stokes equations.
_914384
700 1 _aRodrigo, José L.,
_eauthor.
_974659
700 1 _aSadowski, Witold
_c(Mathematician),
_eauthor.
_974660
776 0 8 _iPrint version:
_z9781107019669
830 0 _aCambridge studies in advanced mathematics ;
_v157.
_974661
856 4 0 _uhttps://doi.org/10.1017/CBO9781139095143
942 _cEBK
999 _c84201
_d84201