000 | 05474nam a22006135i 4500 | ||
---|---|---|---|
001 | 978-1-4757-5184-0 | ||
003 | DE-He213 | ||
005 | 20221102211606.0 | ||
007 | cr nn 008mamaa | ||
008 | 130220s2002 xxu| s |||| 0|eng d | ||
020 |
_a9781475751840 _9978-1-4757-5184-0 |
||
024 | 7 |
_a10.1007/978-1-4757-5184-0 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aCoello Coello, Carlos. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _966760 |
|
245 | 1 | 0 |
_aEvolutionary Algorithms for Solving Multi-Objective Problems _h[electronic resource] / _cby Carlos Coello Coello, David A. Van Veldhuizen, Gary B. Lamont. |
250 | _a1st ed. 2002. | ||
264 | 1 |
_aNew York, NY : _bSpringer US : _bImprint: Springer, _c2002. |
|
300 |
_aXXXV, 576 p. 85 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aGenetic Algorithms and Evolutionary Computation ; _v5 |
|
505 | 0 | _a1. Basic Concepts -- 2. Evolutionary Algorithm MOP Approaches -- 3. Moea Test Suites -- 4. Moea Testing and Analysis -- 5. Moea Theory and Issues -- 6. Applications -- 7. Moea Parallelization -- 8. Multi-Criteria Decision Making -- 9. Special Topics -- 10. Epilog -- Appendix A: Moea Classification and Technique Analysis -- 1 Introduction -- 1.1 Mathematical Notation -- 1.2 Presentation Layout -- 2.1 Lexicographic Techniques -- 2.2 Linear Fitness Combination Techniques -- 2.3 Nonlinear Fitness Combination Techniques -- 2.3.1 Multiplicative Fitness Combination Techniques -- 2.3.2 Target Vector Fitness Combination Techniques -- 2.3.3 Minimax Fitness Combination Techniques -- 3 Progressive MOEA Techniques -- 4.1 Independent Sampling Techniques -- 4.2 Criterion Selection Techniques -- 4.3 Aggregation Selection Techniques -- 4.4 Pareto Sampling Techniques -- 4.4.1 Pareto-Based Selection -- 4.4.2 Pareto Rank- and Niche-Based Selection -- 4.4.3 Pareto Deme-Based Selection -- 4.4.4 Pareto Elitist-Based Selection -- 4.5 Hybrid Selection Techniques -- 5 MOEA Comparisons and Theory -- 5.1 MOEA Technique Comparisons -- 5.2 MOEA Theory and Reviews -- 6 Alternative Multiobjective Techniques -- Appendix B: MOPs in the Literature -- Appendix E: Moea Software Availability -- 1 Introduction -- Appendix F: Moea-Related Information -- 1 Introduction -- 2 Websites of Interest -- 3 Conferences -- 4 Journals -- 5 Researchers -- 6 Distribution Lists -- References. | |
520 | _aResearchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer science. _99832 |
|
650 | 0 |
_aEngineering. _99405 |
|
650 | 0 |
_aOperations research. _912218 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aTheory of Computation. _966761 |
650 | 2 | 4 |
_aTechnology and Engineering. _966762 |
650 | 2 | 4 |
_aOperations Research and Decision Theory. _931599 |
700 | 1 |
_aVan Veldhuizen, David A. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _966763 |
|
700 | 1 |
_aLamont, Gary B. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _966764 |
|
710 | 2 |
_aSpringerLink (Online service) _966765 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9781475751864 |
776 | 0 | 8 |
_iPrinted edition: _z9781475751857 |
776 | 0 | 8 |
_iPrinted edition: _z9780306467622 |
830 | 0 |
_aGenetic Algorithms and Evolutionary Computation ; _v5 _966766 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-1-4757-5184-0 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-BAE | ||
942 | _cETB | ||
999 |
_c81717 _d81717 |