000 03930nam a22006495i 4500
001 978-3-540-48625-1
003 DE-He213
005 20221102211559.0
007 cr nn 008mamaa
008 100301s2003 gw | s |||| 0|eng d
020 _a9783540486251
_9978-3-540-48625-1
024 7 _a10.1007/978-3-540-48625-1
_2doi
050 4 _aQ337.5
050 4 _aTK7882.P3
072 7 _aUYQP
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQP
_2thema
082 0 4 _a006.4
_223
245 1 0 _aIntelligent Data Analysis
_h[electronic resource] :
_bAn Introduction /
_cedited by Michael R. Berthold, David J Hand.
250 _a2nd ed. 2003.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2003.
300 _aXI, 515 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aStatistical Concepts -- Statistical Methods -- Bayesian Methods -- Support Vector and Kernel Methods -- Analysis of Time Series -- Rule Induction -- Neural Networks -- Fuzzy Logic -- Stochastic Search Methods -- Visualization -- Systems and Applications.
520 _a This monograph is a detailed introductory presentation of the key classes of intelligent data analysis (IDA) methods. The 12 coherently written chapters by leading experts provide complete coverage of the core issues. The previous edition was completely revised and a new chapter on kernel methods and support vector machines and a chapter on visualization techniques were added. The revised chapters from the original edition cover classical statistics issues, ranging from the basic concepts of probability through general notions of inference to advanced multivariate and time-series methods, and provide a detailed discussion of the increasingly important Bayesian approaches. The remaining chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions to the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a higher-level overview of the IDA processes, illustrating the breadth of application of the presented ideas. The second edition features an extensive index, which makes this volume also useful as a quick reference on the key techniques in intelligent data analysis.
650 0 _aPattern recognition systems.
_93953
650 0 _aStatisticsĀ .
_931616
650 0 _aInformation storage and retrieval systems.
_922213
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer scienceā€”Mathematics.
_931682
650 0 _aMathematical statistics.
_99597
650 0 _aData mining.
_93907
650 1 4 _aAutomated Pattern Recognition.
_931568
650 2 4 _aStatistical Theory and Methods.
_931618
650 2 4 _aInformation Storage and Retrieval.
_923927
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aProbability and Statistics in Computer Science.
_931857
650 2 4 _aData Mining and Knowledge Discovery.
_966701
700 1 _aBerthold, Michael R.
_eeditor.
_0(orcid)0000-0001-9095-3283
_1https://orcid.org/0000-0001-9095-3283
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_966702
700 1 _aHand, David J.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_966703
710 2 _aSpringerLink (Online service)
_966704
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783642077074
776 0 8 _iPrinted edition:
_z9783540430605
776 0 8 _iPrinted edition:
_z9783662307786
776 0 8 _iPrinted edition:
_z9783662578834
856 4 0 _uhttps://doi.org/10.1007/978-3-540-48625-1
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-BAE
942 _cETB
999 _c81704
_d81704