000 05324cam a2200793 i 4500
001 on1134459711
003 OCoLC
005 20220908100208.0
006 m o d
007 cr cn|||||||||
008 191215t20202020njua ob 001 0 eng
010 _a 2019048293
040 _aDLC
_beng
_erda
_epn
_cDLC
_dOCLCO
_dOCLCF
_dEBLCP
_dJSTOR
_dOCLCQ
_dYDX
_dN$T
_dYDX
_dDEGRU
_dBRX
_dUKAHL
_dWAU
_dVTU
_dSFB
_dIWU
_dOCLCO
_dIEEEE
_dVT2
_dOCLCO
019 _a1147839922
_a1157305543
_a1294673428
020 _a9780691200316
_q(electronic book)
020 _a0691200319
_q(electronic book)
020 _z9780691197296
_q(hardcover)
020 _z0691197296
_q(hardcover)
024 7 _a10.1515/9780691200316
_2doi
029 1 _aAU@
_b000066626580
035 _a(OCoLC)1134459711
_z(OCoLC)1147839922
_z(OCoLC)1157305543
_z(OCoLC)1294673428
037 _a22573/ctvqs3661
_bJSTOR
037 _a9453317
_bIEEE
042 _apcc
050 4 _aQA276
_b.J84 2020eb
072 7 _aMAT
_x042000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aMAT
_x000000
_2bisacsh
082 0 0 _a519.5/4
_223
049 _aMAIN
100 1 _aJuditsky, Anatoli,
_d1962-
_eauthor.
_965478
245 1 0 _aStatistical inference via convex optimization /
_cAnatoli Juditsky, Arkadi Nemirovski.
264 1 _aPrinceton, New Jersey :
_bPrinceton University Press,
_c[2020]
264 4 _c�2020
300 _a1 online resource (xx, 631 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aPrinceton series in applied mathematics
504 _aIncludes bibliographical references and index.
505 0 _aOn computational tractability -- Sparse recovery via �b1s minimization -- Hypothesis testing -- From hypothesis testing to estimating functionals -- Signal recovery by linear estimation -- Signal recovery beyond linear estimates -- Solutions to selected exercises.
520 _a"This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text"--
_cProvided by publisher.
588 0 _aDescription based on online resource, title from digital title page (viewed on February 12, 2021).
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aMathematical statistics.
_99597
650 0 _aMathematical optimization.
_94112
650 0 _aConvex functions.
_965479
650 6 _aOptimisation math�ematique.
_963677
650 6 _aFonctions convexes.
_965480
650 7 _aMATHEMATICS
_xOptimization.
_2bisacsh
_963680
650 7 _aConvex functions.
_2fast
_0(OCoLC)fst00877260
_965479
650 7 _aMathematical optimization.
_2fast
_0(OCoLC)fst01012099
_94112
650 7 _aMathematical statistics.
_2fast
_0(OCoLC)fst01012127
_99597
655 0 _aElectronic books.
_93294
655 4 _aElectronic books.
_93294
700 1 _aNemirovski�i, A. S.
_q(Arkadi�i Semenovich),
_eauthor.
_963734
776 0 8 _iPrint version:
_aJuditsky, Anatoli, 1962-
_tStatistical inference via convex optimization.
_dPrinceton, New Jersey : Princeton University Press, [2020]
_z9780691197296
_w(DLC) 2019048292
_w(OCoLC)1119533070
830 0 _aPrinceton series in applied mathematics.
_965481
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9453317
938 _aDe Gruyter
_bDEGR
_n9780691200316
938 _aYBP Library Services
_bYANK
_n16520676
938 _aProQuest Ebook Central
_bEBLB
_nEBL6033733
938 _aEBSCOhost
_bEBSC
_n2270814
938 _aAskews and Holts Library Services
_bASKH
_nAH37092829
942 _cEBK
994 _a92
_bINTKS
999 _c81466
_d81466