000 03642nam a22006015i 4500
001 978-3-319-19255-0
003 DE-He213
005 20220801222557.0
007 cr nn 008mamaa
008 150725s2016 sz | s |||| 0|eng d
020 _a9783319192550
_9978-3-319-19255-0
024 7 _a10.1007/978-3-319-19255-0
_2doi
050 4 _aTS1-2301
072 7 _aTGP
_2bicssc
072 7 _aTEC020000
_2bisacsh
072 7 _aTGP
_2thema
082 0 4 _a670
_223
100 1 _aŠibalija, Tatjana V.
_eauthor.
_0(orcid)0000-0001-7276-1659
_1https://orcid.org/0000-0001-7276-1659
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_962217
245 1 0 _aAdvanced Multiresponse Process Optimisation
_h[electronic resource] :
_bAn Intelligent and Integrated Approach /
_cby Tatjana V. Šibalija, Vidosav D. Majstorović.
250 _a1st ed. 2016.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aXVII, 298 p. 70 illus., 6 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Review of multiresponse optimisation approaches -- An intelligent, integrated, problem-independent method for multiresponse process optimisation -- Implementation of an intelligent, integrated, problem-independent method to multiresponse process optimisation -- Case studies -- Conclusion.
520 _aThis book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.
650 0 _aManufactures.
_931642
650 0 _aArtificial intelligence.
_93407
650 0 _aControl engineering.
_931970
650 0 _aRobotics.
_92393
650 0 _aAutomation.
_92392
650 0 _aComputational intelligence.
_97716
650 0 _aOperations research.
_912218
650 1 4 _aMachines, Tools, Processes.
_931645
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aControl, Robotics, Automation.
_931971
650 2 4 _aComputational Intelligence.
_97716
650 2 4 _aOperations Research and Decision Theory.
_931599
700 1 _aMajstorović, Vidosav D.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_962218
710 2 _aSpringerLink (Online service)
_962219
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319192543
776 0 8 _iPrinted edition:
_z9783319192567
776 0 8 _iPrinted edition:
_z9783319372594
856 4 0 _uhttps://doi.org/10.1007/978-3-319-19255-0
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c80924
_d80924