000 | 03449nam a22005535i 4500 | ||
---|---|---|---|
001 | 978-3-319-51107-8 | ||
003 | DE-He213 | ||
005 | 20220801222155.0 | ||
007 | cr nn 008mamaa | ||
008 | 170119s2017 sz | s |||| 0|eng d | ||
020 |
_a9783319511078 _9978-3-319-51107-8 |
||
024 | 7 |
_a10.1007/978-3-319-51107-8 _2doi |
|
050 | 4 | _aQ342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aTEC009000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aLodwick, Weldon A. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _960101 |
|
245 | 1 | 0 |
_aFlexible and Generalized Uncertainty Optimization _h[electronic resource] : _bTheory and Methods / _cby Weldon A. Lodwick, Phantipa Thipwiwatpotjana. |
250 | _a1st ed. 2017. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aX, 190 p. 32 illus., 16 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aStudies in Computational Intelligence, _x1860-9503 ; _v696 |
|
505 | 0 | _a1 An Introduction to Generalized Uncertainty Optimization -- 2 Generalized Uncertainty Theory: A Language for Information Deficiency -- 3 The Construction of Flexible and Generalized Uncertainty Optimization Input Data -- 4 An Overview of Flexible and Generalized Uncertainty Optimization -- 5 Flexible Optimization -- 6 Generalized Uncertainty Optimization -- References. . | |
520 | _aThis book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. . | ||
650 | 0 |
_aComputational intelligence. _97716 |
|
650 | 0 |
_aOperations research. _912218 |
|
650 | 0 |
_aManagement science. _98316 |
|
650 | 0 |
_aProbabilities. _94604 |
|
650 | 1 | 4 |
_aComputational Intelligence. _97716 |
650 | 2 | 4 |
_aOperations Research, Management Science . _931720 |
650 | 2 | 4 |
_aProbability Theory. _917950 |
700 | 1 |
_aThipwiwatpotjana, Phantipa. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _960102 |
|
710 | 2 |
_aSpringerLink (Online service) _960103 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319511054 |
776 | 0 | 8 |
_iPrinted edition: _z9783319511061 |
830 | 0 |
_aStudies in Computational Intelligence, _x1860-9503 ; _v696 _960104 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-51107-8 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c80477 _d80477 |