000 | 04105nam a22005775i 4500 | ||
---|---|---|---|
001 | 978-3-030-35743-6 | ||
003 | DE-He213 | ||
005 | 20220801220609.0 | ||
007 | cr nn 008mamaa | ||
008 | 191211s2020 sz | s |||| 0|eng d | ||
020 |
_a9783030357436 _9978-3-030-35743-6 |
||
024 | 7 |
_a10.1007/978-3-030-35743-6 _2doi |
|
050 | 4 | _aTK7867-7867.5 | |
072 | 7 |
_aTJFC _2bicssc |
|
072 | 7 |
_aTEC008010 _2bisacsh |
|
072 | 7 |
_aTJFC _2thema |
|
082 | 0 | 4 |
_a621.3815 _223 |
100 | 1 |
_aRosa, João P. S. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _951224 |
|
245 | 1 | 0 |
_aUsing Artificial Neural Networks for Analog Integrated Circuit Design Automation _h[electronic resource] / _cby João P. S. Rosa, Daniel J. D. Guerra, Nuno C. G. Horta, Ricardo M. F. Martins, Nuno C. C. Lourenço. |
250 | _a1st ed. 2020. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2020. |
|
300 |
_aXVIII, 101 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringerBriefs in Applied Sciences and Technology, _x2191-5318 |
|
505 | 0 | _aIntroduction -- Related Work -- Overview of Artificial Neural Networks (ANNs) -- On the Exploration of Promising Analog IC Designs via ANNs -- ANNs as an Alternative for Automatic Analog IC Placement -- Conclusions. . | |
520 | _aThis book addresses the automatic sizing and layout of analog integrated circuits (ICs) using deep learning (DL) and artificial neural networks (ANN). It explores an innovative approach to automatic circuit sizing where ANNs learn patterns from previously optimized design solutions. In opposition to classical optimization-based sizing strategies, where computational intelligence techniques are used to iterate over the map from devices’ sizes to circuits’ performances provided by design equations or circuit simulations, ANNs are shown to be capable of solving analog IC sizing as a direct map from specifications to the devices’ sizes. Two separate ANN architectures are proposed: a Regression-only model and a Classification and Regression model. The goal of the Regression-only model is to learn design patterns from the studied circuits, using circuit’s performances as input features and devices’ sizes as target outputs. This model can size a circuit given its specifications for a single topology. The Classification and Regression model has the same capabilities of the previous model, but it can also select the most appropriate circuit topology and its respective sizing given the target specification. The proposed methodology was implemented and tested on two analog circuit topologies. . | ||
650 | 0 |
_aElectronic circuits. _919581 |
|
650 | 0 |
_aSignal processing. _94052 |
|
650 | 0 |
_aComputational intelligence. _97716 |
|
650 | 1 | 4 |
_aElectronic Circuits and Systems. _951225 |
650 | 2 | 4 |
_aSignal, Speech and Image Processing . _931566 |
650 | 2 | 4 |
_aComputational Intelligence. _97716 |
700 | 1 |
_aGuerra, Daniel J. D. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _951226 |
|
700 | 1 |
_aHorta, Nuno C. G. _eauthor. _0(orcid)0000-0002-1687-1447 _1https://orcid.org/0000-0002-1687-1447 _4aut _4http://id.loc.gov/vocabulary/relators/aut _951227 |
|
700 | 1 |
_aMartins, Ricardo M. F. _eauthor. _0(orcid)0000-0002-8251-1415 _1https://orcid.org/0000-0002-8251-1415 _4aut _4http://id.loc.gov/vocabulary/relators/aut _951228 |
|
700 | 1 |
_aLourenço, Nuno C. C. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _951229 |
|
710 | 2 |
_aSpringerLink (Online service) _951230 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030357429 |
776 | 0 | 8 |
_iPrinted edition: _z9783030357443 |
830 | 0 |
_aSpringerBriefs in Applied Sciences and Technology, _x2191-5318 _951231 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-35743-6 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c78733 _d78733 |