000 03828nam a22005895i 4500
001 978-3-319-56922-2
003 DE-He213
005 20220801220059.0
007 cr nn 008mamaa
008 170428s2017 sz | s |||| 0|eng d
020 _a9783319569222
_9978-3-319-56922-2
024 7 _a10.1007/978-3-319-56922-2
_2doi
050 4 _aTA352-356
050 4 _aQC20.7.N6
072 7 _aTBJ
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aTBJ
_2thema
072 7 _aGPFC
_2thema
082 0 4 _a515.39
_223
100 1 _aKlyatskin, Valery I.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_948230
245 1 0 _aFundamentals of Stochastic Nature Sciences
_h[electronic resource] /
_cby Valery I. Klyatskin.
250 _a1st ed. 2017.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aXII, 190 p. 62 illus., 11 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUnderstanding Complex Systems,
_x1860-0840
505 0 _aTwo-dimensional geophysical fluid dynamics.- Parametrically excited dynamic systems.- Examples of stochastic dynamic systems.- Statistical characteristics of a random velocity field u(r, t).- Lognormal processes, intermittency, and dynamic localization -- Stochastic parametric resonance -- Wave localization in randomly layered media -- Lognormal fields, statistical topography, and clustering -- Stochastic transport phenomena in a random velocity field -- Parametrically excited dynamic systems with Gaussian pumping -- Conclusion.
520 _aThis book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens – or doesn’t! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under which such structure formation takes place. To make the content more accessible, these conditions are described at a comparatively elementary mathematical level by employing ideas from statistical topography.
650 0 _aDynamics.
_948231
650 0 _aNonlinear theories.
_93339
650 0 _aSystem theory.
_93409
650 0 _aGeotechnical engineering.
_94958
650 1 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aComplex Systems.
_918136
650 2 4 _aGeotechnical Engineering and Applied Earth Sciences.
_931829
710 2 _aSpringerLink (Online service)
_948232
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319569215
776 0 8 _iPrinted edition:
_z9783319569239
776 0 8 _iPrinted edition:
_z9783319860367
830 0 _aUnderstanding Complex Systems,
_x1860-0840
_948233
856 4 0 _uhttps://doi.org/10.1007/978-3-319-56922-2
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c78180
_d78180