000 12594nam a2201357 i 4500
001 5237323
003 IEEE
005 20220712205612.0
006 m o d
007 cr |n|||||||||
008 151221s2005 njua ob 001 eng d
020 _a9780471678380
_qebook
020 _z0471675806
_qprint. ed.
020 _z9780471675808
_qprint. ed.
020 _z0471678384
_qelectronic
024 7 _a10.1002/0471678384
_2doi
035 _a(CaBNVSL)mat05237323
035 _a(IDAMS)0b000064810955c0
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aRC77.5
_b.E456 2004eb
082 0 0 _a616.7/407547
_222
245 0 0 _aElectromyography :
_bphysiology, engineering, and noninvasive applications /
_cedited by Roberto Merletti, Philip Parker.
264 1 _aHoboken, New Jersey :
_bWiley-Interscience,
_cc2004.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2005]
300 _a1 PDF (xxii, 494 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE press series on biomedical engineering ;
_v11
504 _aIncludes bibliographical references and index.
505 0 _aIntroduction -- Contributors -- 1 BASIC PHYSIOLOGY AND BIOPHYSICS OF EMG SIGNAL GENERATION (T. Moritani, D. Stegeman, R. Merletti) -- 1.1 Introduction -- 1.2 Basic Physiology of Motor Control and Muscle Contraction -- 1.3 Basic Electrophysiology of the Muscle Cell Membrane -- References -- 2 NEEDLE AND WIRE DETECTION TECHNIQUES (J. V. Trontelj, J. Jabre, M. Mihelin) -- 2.1 Anatomical and Physiological Background of Intramuscular Recording -- 2.2 Recording Characteristics of Needle Electrodes -- 2.3 Conventional Needle EMG -- 2.4 Special Needle Recording Techniques -- 2.5 Physical Characteristics of Needle EMG Signals -- 2.6 Recording Equipment -- References -- 3 DECOMPOSITION OF INTRAMUSCULAR EMG SIGNALS (D. W. Stashuk, D. Farina, K. Sgaard) -- 3.1 Introduction -- 3.2 Basic Steps for EMG Signal Decomposition -- 3.3 Evaluation of Performance of EMG Signal Decomposition Algorithms -- 3.4 Applications of Results of the Decomposition of an Intramuscular EMG Signal -- 3.5 Conclusions -- References -- 4 BIOPHYSICS OF THE GENERATION OF EMG SIGNALS (D. Farina, R. Merletti, D. F. Stegeman) -- 4.1 Introduction -- 4.2 EMG Signal Generation -- 4.3 Crosstalk -- 4.4 Relationships between Surface EMG Features and Developed Force -- 4.5 Conclusions -- References -- 5 DETECTION AND CONDITIONING OF THE SURFACE EMG SIGNAL (R. Merletti, H. Hermens) -- 5.1 Introduction -- 5.2 Electrodes: Their Transfer Function -- 5.3 Electrodes: Their Impedance, Noise, and dc Voltages -- 5.4 Electrode Configuration, Distance, Location -- 5.5 EMG Front-End Amplifiers -- 5.6 EMG Filters: Specifications -- 5.7 Sampling and A/D Conversion -- 5.8 European Recommendations on Electrodes and Electrode Locations -- References -- 6 SINGLE-CHANNEL TECHNIQUES FOR INFORMATION EXTRACTION FROM THE SURFACE EMG SIGNAL (E. A. Clancy, D. Farina, G. Filligoi) -- 6.1 Introduction -- 6.2 Spectral Estimation of Deterministic Signals and Stochastic Processes -- 6.3 Basic Surface EMG Signal Models -- 6.4 Surface EMG Amplitude Estimation.
505 8 _a6.5 Extraction of Information in Frequency Domain from Surface EMG Signals -- 6.6 Joint Analysis of EMG Spectrum and Amplitude (JASA) -- 6.7 Recurrence Quantification Analysis of Surface EMG Signals -- 6.8 Conclusions -- References -- 7 MULTI-CHANNEL TECHNIQUES FOR INFORMATION EXTRACTION FROM THE SURFACE EMG (D. Farina, R. Merletti, C. Disselhorst-Klug) -- 7.1 Introduction -- 7.2 Spatial Filtering -- 7.3 Spatial Sampling -- 7.4 Estimation of Muscle-Fiber Conduction Velocity -- 7.5 Conclusions -- References -- 8 EMG MODELING AND SIMULATION (D. F. Stegeman, R. Merletti, H. J. Hermens) -- 8.1 Introduction -- 8.2 Phenomenological Models of EMG -- 8.3 Elements of Structure-Based SEMG Models -- 8.4 Basic Assumptions -- 8.5 Elementary Sources of Bioelectric Muscle Activity -- 8.6 Fiber Membrane Activity Profiles, Their Generation, Propagation, and Extinction -- 8.7 Structure of the Motor Unit -- 8.8 Volume Conduction -- 8.9 Modeling EMG Detection Systems -- 8.10 Modeling Motor Unit Recruitment and Firing Behavior -- 8.11 Inverse Modeling -- 8.12 Modeling of Muscle Fatigue -- 8.13 Other Applications of Modeling -- 8.14 Conclusions -- References -- 9 MYOELECTRIC MANIFESTATIONS OF MUSCLE FATIGUE (R. Merletti, A. Rainoldi, D. Farina) -- 9.1 Introduction -- 9.2 Definitions and Sites of Neuromuscular Fatigue -- 9.3 Assessment of Muscle Fatigue -- 9.4 How Fatigue Is Reflected in Surface EMG Variables -- 9.5 Myoelectric Manifestations of Muscle Fatigue in Isometric Voluntary Contractions -- 9.6 Fiber Typing and Myoelectric Manifestations of Muscle Fatigue -- 9.7 Factors Affecting Surface EMG Variable -- 9.8 Repeatability of Estimates of EMG Variables and Fatigue Indexes -- 9.9 Conclusions -- References -- 10 ADVANCED SIGNAL PROCESSING TECHNIQUES (D. Zazula, S. Karlsson, C. Doncarli) -- 10.1 Introduction -- 10.2 Theoretical Background -- 10.3 Decomposition of EMG Signals -- 10.4 Applications to Monitoring Myoelectric Manifestations of Muscle Fatigue -- 10.5 Conclusions -- Acknowledgment.
505 8 _aReferences -- 11 SURFACE MECHANOMYOGRAM (C. Orizio) -- 11.1 The Mechanomyogram (MMG): General Aspects during Stimulated and Voluntary Contraction -- 11.2 Detection Techniques and Sensors Comparison -- 11.3 Comparison between Different Detectors -- 11.4 Simulation -- 11.5 MMG Versus Force: Joint and Adjunct Information Content -- 11.6 MMG Versus EMG: Joint and Adjunct Information Content -- 11.7 Area of Application -- References -- 12 SURFACE EMG APPLICATIONS IN NEUROLOGY (M. J. Zwarts, D. F. Stegeman, J. G. van Dijk) -- 12.1 Introduction -- 12.2 Central Nervous System Disorders and SEMG -- 12.3 Compound Muscle Action Potential and Motor Nerve Conduction -- 12.4 CMAP Generation -- 12.5 Clinical Applications -- 12.6 Pathological Fatigue -- 12.7 New Avenues: High-Density Multichannel Recording -- 12.8 Conclusion -- References -- 13 APPLICATIONS IN ERGONOMICS (G. M. Hgg, B. Melin, R. Kadefors) -- 13.1 Historic Perspective -- 13.2 Basic Workload Concepts in Ergonomics -- 13.3 Basic Surface EMG Signal Processing -- 13.4 Load Estimation and SEMG Normalization and Calibration -- 13.5 Amplitude Data Reduction over Time -- 13.6 Electromyographic Signal Alterations Indicating Muscle Fatigue in Ergonomics -- 13.7 SEMG Biofeedback in Ergonomics -- 13.8 Surface EMG and Musculoskeletal Disorders -- 13.9 Psychological Effects on EMG -- References -- 14 APPLICATIONS IN EXERCISE PHYSIOLOGY (F. Felici) -- 14.1 Introduction -- 14.2 A Few "Tips and Tricks" -- 14.3 Time and Frequency Domain Analysis of sEMG: What Are We Looking For? -- 14.4 Application of sEMG to the Study of Exercise -- 14.5 Strength and Power Training -- 14.6 Muscle Damage Studied by Means of sEMG -- References -- 15 APPLICATIONS IN MOVEMENT AND GAIT ANALYSIS (C. Frigo, R. Shiavi) -- 15.1 Relevance of Electromyography in Kinesiology -- 15.2 Typical Acquisition Settings -- 15.3 Study of Motor Control Strategies -- 15.4 Investigation on the Mechanical Effect of Muscle Contraction -- 15.5 Gait Analysis -- 15.6 Identification of Pathophysiologic Factors.
505 8 _a15.7 Workload Assessment in Occupational Biomechanics -- 15.8 Biofeedback -- 15.9 The Linear Envelope -- 15.10 Information Enhancement through Multifactorial Analysis -- References -- 16 APPLICATIONS IN REHABILITATION MEDICINE AND RELATED FIELDS (A. Rainoldi, R. Casale, P. Hodges, G. Jull) -- 16.1 Introduction -- 16.2 Electromyography as a Tool in Back and Neck Pain -- 16.3 EMG of the Pelvic Floor: A New Challenge in Neurological Rehabilitation -- 16.4 Age-Related Effects on EMG Assessment of Muscle Physiology -- 16.5 Surface EMG and Hypobaric Hipoxia -- 16.6 Microgravity Effects on Neuromuscular System -- References -- 17 BIOFEEDBACK APPLICATIONS (J. R. Cram) -- 17.1 Introduction -- 17.2 Biofeedback Application to Impairment Syndromes -- 17.3 SEMG Biofeedback Techniques -- 17.4 Summary -- References -- 18 CONTROL OF POWERED UPPER LIMB PROSTHESES (P. A. Parker, K. B. Englehart, B. S. Hudgins) -- 18.1 Introduction -- 18.2 Myoelectric Signal as a Control Input -- 18.3 Conventional Myoelectric Control -- 18.4 Emerging MEC Strategies -- 18.5 Summary -- References -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aA complete overview of electromyography with contributions from pacesetters in the field In recent years, insights from the field of engineering have illuminated the vast potential of electromyography (EMG) in biomedical technology. Featuring contributions from key innovators working in the field today, Electromyography reveals the broad applications of EMG data in areas as diverse as neurology, ergonomics, exercise physiology, rehabilitation, movement analysis, biofeedback, and myoelectric control of prosthesis. Bridging the gap between engineering and physiology, this pioneering volume explains the essential concepts needed to detect, understand, process, and interpret EMG signals using non-invasive electrodes. Electromyography shows how engineering tools such as models and signal processing methods can greatly augment the insight provided by surface EMG signals. Topics covered include: . Basic physiology and biophysics of EMG generation. Needle and surface electrode detection techniques. Signal conditioning and processing issues. Single- and multi-channel techniques for information extraction. Development and application of physical models. Advanced signal processing techniques With its fresh engineering perspective, Electromyography offers physiologists, medical professionals, and students in biomedical engineering a new window into the far-reaching possibilities of this dynamic technology.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aElectromyography.
_926424
650 0 _aMuscles.
_926425
650 0 _aNeuromuscular diseases
_xDiagnosis.
_926426
653 _aElectrical and Electronics Engineering.
655 0 _aElectronic books.
_93294
695 _aAdaptation model
695 _aAutoregressive processes
695 _aBack
695 _aBiochemistry
695 _aBiological control systems
695 _aBiomembranes
695 _aCalibration
695 _aCentral nervous system
695 _aComputational modeling
695 _aConductors
695 _aControl systems
695 _aCorrelation
695 _aData mining
695 _aDiseases
695 _aElectric potential
695 _aElectrodes
695 _aElectromyography
695 _aErgonomics
695 _aEstimation
695 _aFace
695 _aFatigue
695 _aForce
695 _aFrequency domain analysis
695 _aGeometry
695 _aHead
695 _aHumans
695 _aImpedance
695 _aIndexes
695 _aJoints
695 _aKinematics
695 _aLaboratories
695 _aLegged locomotion
695 _aMIMO
695 _aManganese
695 _aMarkov processes
695 _aMathematical model
695 _aMeasurement by laser beam
695 _aMotor drives
695 _aMuscles
695 _aNeedles
695 _aNeuromuscular
695 _aNeurons
695 _aNoise
695 _aNumerical models
695 _aPain
695 _aProcess control
695 _aProsthetics
695 _aSensors
695 _aShape
695 _aSignal resolution
695 _aSkin
695 _aSolid modeling
695 _aSpine
695 _aStochastic processes
695 _aStress
695 _aSurface emitting lasers
695 _aSurface impedance
695 _aSurface morphology
695 _aSurface treatment
695 _aTendons
695 _aTime frequency analysis
695 _aTraction motors
695 _aTransducers
700 1 _aMerletti, Roberto.
_926427
700 1 _aParker, Philip
_q(Philip A.)
_926428
710 2 _aJohn Wiley & Sons,
_epublisher.
_96902
710 2 _aIEEE Xplore (Online service),
_edistributor.
_926429
776 0 8 _iPrint version:
_z9780471675808
830 0 _aIEEE Press series in biomedical engineering ;
_v11
_926430
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237323
942 _cEBK
999 _c73769
_d73769