000 02841cam a2200349Ii 4500
001 9781351056823
008 180706t20182018flua ob 001 0 eng d
020 _a9781351056793
_q(e-book: Mobi)
020 _a9781351056823
_q(e-book : PDF)
020 _z9781138482760
_q(paperback)
024 7 _a10.1201/9781351056823
_2doi
035 _a(OCoLC)1023818938
040 _aFlBoTFG
_cFlBoTFG
_erda
050 4 _aQA312
_b.K73 2018
082 0 4 _a515.42
_bK897
100 1 _aKrantz, Steven G.,
_eauthor.
_920350
245 1 0 _aElementary introduction to the Lebesgue integral /
_cSteven G. Krantz.
250 _aFirst edition.
264 1 _aBoca Raton, FL :
_bCRC Press,
_c[2018]
264 4 _c©2018
300 _a1 online resource (xii, 183 pages)
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
490 0 _aTextbooks in Mathematics
505 0 0 _tchapter 1 Introductory Thoughts /
_r Steven G. Krantz --
_tchapter 2 The Purpose of Measures /
_r Steven G. Krantz --
_tchapter 3 The Leuesgue Integral /
_r Steven G. Krantz --
_tchapter 4 Integrable Functions /
_r Steven G. Krantz --
_tchapter 5 The Lebesgue Spaces /
_r Steven G. Krantz --
_tchapter 6 The Concept of Outer Measure /
_r Steven G. Krantz --
_tchapter 7 What Is a Measurable Set? /
_r Steven G. Krantz --
_tchapter 8 Decomposition Theorems /
_r Steven G. Krantz --
_tchapter 9 Creation of Measures /
_r Steven G. Krantz --
_tchapter 10 Instances of Measurable Sets /
_r Steven G. Krantz --
_tchapter 11 Approximation by Open And Closed Sets /
_r Steven G. Krantz --
_tchapter 12 Different Methods of Convergence /
_r Steven G. Krantz --
_tchapter 13 Measure on a Product Space /
_r Steven G. Krantz --
_tchapter 14 Additivity for Outer Measure /
_r Steven G. Krantz --
_tchapter 15 Nonmeasuraule Sets and Non‐Borel Sets /
_r Steven G. Krantz --
_tchapter 16 Applications /
_r Steven G. Krantz.
520 _a"It is important and useful to have a text on the Lebesgue theory that is accessible to bright undergraduates. This is such a text. Going back to the days of Isaac Newton and Gottfried Wilhelm von Leibniz, and even to Newton's teacher Isaac Barrow, the integral has been a mainstay of mathematical analysis. The integral is a device for amalgamating information. It is a powerful and irreplaceable tool. The text concentrates on the real line. The student will be familiar with the real numbers and will be comfortable internalizing the new ideas of measure theory in that context. In addition to having copious examples and numerous figures, this book includes a Table of Notation and a Glossary."--Provided by publisher.
650 0 _aLebesgue integral.
_920351
776 0 8 _iPrint version:
_z9781138482760
856 4 0 _uhttps://www.taylorfrancis.com/books/9781351056823
_zClick here to view.
942 _cEBK
999 _c72362
_d72362