000 | 02841cam a2200349Ii 4500 | ||
---|---|---|---|
001 | 9781351056823 | ||
008 | 180706t20182018flua ob 001 0 eng d | ||
020 |
_a9781351056793 _q(e-book: Mobi) |
||
020 |
_a9781351056823 _q(e-book : PDF) |
||
020 |
_z9781138482760 _q(paperback) |
||
024 | 7 |
_a10.1201/9781351056823 _2doi |
|
035 | _a(OCoLC)1023818938 | ||
040 |
_aFlBoTFG _cFlBoTFG _erda |
||
050 | 4 |
_aQA312 _b.K73 2018 |
|
082 | 0 | 4 |
_a515.42 _bK897 |
100 | 1 |
_aKrantz, Steven G., _eauthor. _920350 |
|
245 | 1 | 0 |
_aElementary introduction to the Lebesgue integral / _cSteven G. Krantz. |
250 | _aFirst edition. | ||
264 | 1 |
_aBoca Raton, FL : _bCRC Press, _c[2018] |
|
264 | 4 | _c©2018 | |
300 | _a1 online resource (xii, 183 pages) | ||
336 |
_atext _2rdacontent |
||
337 |
_acomputer _2rdamedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 0 | _aTextbooks in Mathematics | |
505 | 0 | 0 |
_tchapter 1 Introductory Thoughts / _r Steven G. Krantz -- _tchapter 2 The Purpose of Measures / _r Steven G. Krantz -- _tchapter 3 The Leuesgue Integral / _r Steven G. Krantz -- _tchapter 4 Integrable Functions / _r Steven G. Krantz -- _tchapter 5 The Lebesgue Spaces / _r Steven G. Krantz -- _tchapter 6 The Concept of Outer Measure / _r Steven G. Krantz -- _tchapter 7 What Is a Measurable Set? / _r Steven G. Krantz -- _tchapter 8 Decomposition Theorems / _r Steven G. Krantz -- _tchapter 9 Creation of Measures / _r Steven G. Krantz -- _tchapter 10 Instances of Measurable Sets / _r Steven G. Krantz -- _tchapter 11 Approximation by Open And Closed Sets / _r Steven G. Krantz -- _tchapter 12 Different Methods of Convergence / _r Steven G. Krantz -- _tchapter 13 Measure on a Product Space / _r Steven G. Krantz -- _tchapter 14 Additivity for Outer Measure / _r Steven G. Krantz -- _tchapter 15 Nonmeasuraule Sets and Non‐Borel Sets / _r Steven G. Krantz -- _tchapter 16 Applications / _r Steven G. Krantz. |
520 | _a"It is important and useful to have a text on the Lebesgue theory that is accessible to bright undergraduates. This is such a text. Going back to the days of Isaac Newton and Gottfried Wilhelm von Leibniz, and even to Newton's teacher Isaac Barrow, the integral has been a mainstay of mathematical analysis. The integral is a device for amalgamating information. It is a powerful and irreplaceable tool. The text concentrates on the real line. The student will be familiar with the real numbers and will be comfortable internalizing the new ideas of measure theory in that context. In addition to having copious examples and numerous figures, this book includes a Table of Notation and a Glossary."--Provided by publisher. | ||
650 | 0 |
_aLebesgue integral. _920351 |
|
776 | 0 | 8 |
_iPrint version: _z9781138482760 |
856 | 4 | 0 |
_uhttps://www.taylorfrancis.com/books/9781351056823 _zClick here to view. |
942 | _cEBK | ||
999 |
_c72362 _d72362 |