000 02004cam a2200421Ii 4500
001 9781315405780
008 180706t20172017flua o 001 0 eng d
020 _a9781315405780
_q(e-book : PDF)
020 _a9781315405759
_q(e-book: Mobi)
020 _z9781138030169
_q(paperback)
020 _z9781138430846
_q(hardback)
024 7 _a10.1201/9781315405780
_2doi
035 _a(OCoLC)967412340
040 _aFlBoTFG
_cFlBoTFG
_erda
050 4 _aQA174.2
_b.B37 2017
082 0 4 _a512.2
_bB259
100 1 _aBarnard, Tony
_c(Mathematics professor),
_eauthor.
_918013
240 1 0 _aMathematical groups
245 1 0 _aDiscovering group theory :
_ba transition to advanced mathematics /
_cTony Barnard, Hugh Neill.
264 1 _aBoca Raton :
_bCRC Press,
_c[2017]
264 4 _c©2017
300 _a1 online resource
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
490 1 _aTextbooks in mathematics
500 _aPrevious edition: Mathematical groups / Tony Barnard and Hugh Neill (London : Teach Yourself Books, 1996).
505 0 _a1. Proof -- 2. Sets -- 3. Binary operations -- 4. Integers -- 5. Groups -- 6. Subgroups -- 7. Cyclic groups -- 8. Products of groups -- 9. Functions -- 10. Composition of functions -- 11. Isomorphisms -- 12. Permutations -- 13. Dihedral groups -- 14. Cosets -- 15. Groups of orders up to 8 -- 16. Equivalence relations -- 17. Quotient groups -- 18. Homomorphisms -- 19. The first isomorphism theorem.
650 0 _aGroup theory
_vTextbooks.
_918014
650 0 _aAlgebra
_vTextbooks.
_918015
650 0 _aMathematics
_xStudy and teaching.
_913415
700 1 _aBarnard, Tony
_c(Mathematics professor).
_tMathematical groups.
_918016
700 1 _aNeill, Hugh,
_eauthor.
_918017
776 0 8 _iPrint version:
_z9781138430846
830 0 _aTextbooks in mathematics (Boca Raton, Fla.)
_914423
856 4 0 _uhttps://www.taylorfrancis.com/books/9781315405773
_zClick here to view.
942 _cEBK
999 _c71700
_d71700