000 | 02004cam a2200421Ii 4500 | ||
---|---|---|---|
001 | 9781315405780 | ||
008 | 180706t20172017flua o 001 0 eng d | ||
020 |
_a9781315405780 _q(e-book : PDF) |
||
020 |
_a9781315405759 _q(e-book: Mobi) |
||
020 |
_z9781138030169 _q(paperback) |
||
020 |
_z9781138430846 _q(hardback) |
||
024 | 7 |
_a10.1201/9781315405780 _2doi |
|
035 | _a(OCoLC)967412340 | ||
040 |
_aFlBoTFG _cFlBoTFG _erda |
||
050 | 4 |
_aQA174.2 _b.B37 2017 |
|
082 | 0 | 4 |
_a512.2 _bB259 |
100 | 1 |
_aBarnard, Tony _c(Mathematics professor), _eauthor. _918013 |
|
240 | 1 | 0 | _aMathematical groups |
245 | 1 | 0 |
_aDiscovering group theory : _ba transition to advanced mathematics / _cTony Barnard, Hugh Neill. |
264 | 1 |
_aBoca Raton : _bCRC Press, _c[2017] |
|
264 | 4 | _c©2017 | |
300 | _a1 online resource | ||
336 |
_atext _2rdacontent |
||
337 |
_acomputer _2rdamedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 | _aTextbooks in mathematics | |
500 | _aPrevious edition: Mathematical groups / Tony Barnard and Hugh Neill (London : Teach Yourself Books, 1996). | ||
505 | 0 | _a1. Proof -- 2. Sets -- 3. Binary operations -- 4. Integers -- 5. Groups -- 6. Subgroups -- 7. Cyclic groups -- 8. Products of groups -- 9. Functions -- 10. Composition of functions -- 11. Isomorphisms -- 12. Permutations -- 13. Dihedral groups -- 14. Cosets -- 15. Groups of orders up to 8 -- 16. Equivalence relations -- 17. Quotient groups -- 18. Homomorphisms -- 19. The first isomorphism theorem. | |
650 | 0 |
_aGroup theory _vTextbooks. _918014 |
|
650 | 0 |
_aAlgebra _vTextbooks. _918015 |
|
650 | 0 |
_aMathematics _xStudy and teaching. _913415 |
|
700 | 1 |
_aBarnard, Tony _c(Mathematics professor). _tMathematical groups. _918016 |
|
700 | 1 |
_aNeill, Hugh, _eauthor. _918017 |
|
776 | 0 | 8 |
_iPrint version: _z9781138430846 |
830 | 0 |
_aTextbooks in mathematics (Boca Raton, Fla.) _914423 |
|
856 | 4 | 0 |
_uhttps://www.taylorfrancis.com/books/9781315405773 _zClick here to view. |
942 | _cEBK | ||
999 |
_c71700 _d71700 |