000 06320cam a2200661Ii 4500
001 9780429488672
003 FlBoTFG
005 20220711212426.0
006 m o d
007 cr cnu---unuuu
008 190225s2019 si ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9780429488672
_qelectronic book
020 _a042948867X
_qelectronic book
020 _a9780429949609
_q(electronic bk. : EPUB)
020 _a042994960X
_q(electronic bk. : EPUB)
020 _a9780429949616
_q(electronic bk. : PDF)
020 _a0429949618
_q(electronic bk. : PDF)
020 _a9780429949593
_q(electronic bk. : Mobipocket)
020 _a0429949596
_q(electronic bk. : Mobipocket)
020 _z981480004X
020 _z9789814800044
024 8 _a10.1201/9780429488672
_2doi
035 _a(OCoLC)1088407615
035 _a(OCoLC-P)1088407615
050 4 _aTA418.9.C6
_bB53 2019
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
072 7 _aTEC
_x010000
_2bisacsh
072 7 _aTGM
_2bicssc
082 0 4 _a620.11897
_223
100 1 _aBichurin, Mirza I.,
_eauthor.
_916423
245 1 0 _aMagnetoelectric composites /
_cMirza I. Bichurin, Vladimir M. Petrov, Roman V. Petrov, Alexander S. Tatarenko.
264 1 _aSingapore :
_bPan Staford Publishing,
_c[2019]
300 _a1 online resource (1 volume)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aCover; Half Title; Title Page; Copyright Page; Table of Contents; Foreword; Preface; 1: Modeling of Magnetoelectric Composites; 1.1 Low-Frequency Range; 1.1.1 Symmetric Layered Structures; 1.1.2 Bilayer Structure; 1.1.3 Examples of Multilayer Structures; 1.1.4 Bulk Composites; 1.1.5 Magnetoelectric Effects in Compositionally Graded Layered Structures; 1.1.6 Magnetoelectric Effect at Zero Bias Field; 1.1.7 Magnetoelectric Effect in Dimensionally Graded Laminate Composites; 1.1.8 Maxwell-Wagner Relaxation in ME Composites; 1.1.8.1 Layered composites; 1.1.8.2 Bulk composites
505 8 _a1.2 Electromechanical Resonance Range1.2.1 Longitudinal and Radial Modes; 1.2.2 Disc-Shaped Bilayer; 1.2.3 Bending Modes; 1.2.4 Shear Vibrations; 1.3 Ferromagnetic Resonance Range; 1.3.1 Bilayer Structure; 1.3.2 Basic Theory: Macroscopic Homogeneous Model; 1.3.3 Uniaxial Structure; 1.3.4 Layered Composite with Single-Crystal Components; 1.3.5 Electric Field-Induced Broadening of Magnetic Resonance Line; 1.3.6 Resonance Line Shift by Electric Signal with Electromechanical Resonance Frequency; 1.4 Magnetoacoustic Resonance Range; 1.4.1 Direct Magnetoelectric Effect
505 8 _a1.4.2 Effects of Exchange Interactions on Magnetoacoustic Resonance1.4.3 Electric Field-Induced Magnetic Excitations; 1.5 Nomograph Method for Predicting Magnetoelectric Coupling; 1.5.1 Low-Frequency Magnetoelectric Coupling; 1.5.2 Magnetoelectric Coupling at Bending Mode; 1.5.3 Magnetoelectric Coupling at Axial Mode; 1.5.4 Magnetoelectric Coupling in FMR Region; 1.6 Conclusions; 2: Applications of Magnetoelectric Composites; 2.1 ME Inductance; 2.1.1 Theoretical Model of the Device; 2.1.2 Comparison of Theoretical and Experimental Data; 2.2 ME Sensors; 2.2.1 Magnetic Field Sensor
505 8 _a2.2.1.1 Principle of operation2.2.1.2 Equivalent circuit; 2.2.1.3 Design; 2.2.1.4 Discussions; 2.2.2 Current Sensor; 2.2.2.1 Nonresonant current sensor; 2.2.2.2 Resonant current sensor; 2.2.3 Crankshaft Position Sensor; 2.2.3.1 Principle of operation; 2.2.3.2 Design; 2.2.3.3 Discussions; 2.3 ME Harvesters; 2.3.1 ME Elements Design; 2.3.2 Measurement Stand; 2.3.3 Measurement Data; 2.3.4 Theoretical Approach; 2.3.5 Generator; 2.3.5.1 Design; 2.3.5.2 Prototype of generator; 2.3.5.3 Measuring stand; 2.3.5.4 Characteristics of ME element; 2.3.5.5 Characteristics of generator
505 8 _a2.3.5.6 Configuration of the magnetic field generator2.3.5.7 Calculation of ME coefficient; 2.3.5.8 Outlook for increasing output power of the ME generator; 2.4 ME Microwave Resonators; 2.4.1 ME Microwave Devices; 2.4.2 Magnetoelectric Band-Pass Filter; 2.4.2.1 Characteristics; 2.4.2.2 Filter design; 2.4.2.3 Results; 2.4.3 Magnetoelectric Phase Shifter; 2.4.3.1 Experiment; 2.4.3.2 Results; 2.4.4 Magnetoelectric Microwave Isolator- Attenuator; 2.4.4.1 Results and discussion; 2.4.5 Modeling of ME Microwave Devices; 2.4.5.1 Results and discussion; 2.5 ME Gyrator; 2.5.1 Gyrator's Element Design
520 _aThis book is dedicated to modeling and application of magnetoelectric (ME) effects in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, numerous theoretical and experimental studies on ME composites are available but few on the development and research of instruments based on them. So far, only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors. The book presents the authors' many years of experience gained in ME composites and through creation of device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aComposite materials
_xMagnetic properties.
_916424
650 0 _aComposite materials
_xElectric properties.
_911709
650 0 _aElectromagnetism
_xMeasurement.
_916425
650 7 _aTECHNOLOGY & ENGINEERING / Engineering (General)
_2bisacsh
_916426
650 7 _aTECHNOLOGY & ENGINEERING / Reference
_2bisacsh
_916427
650 7 _aTECHNOLOGY / Environmental Engineering & Technology
_2bisacsh
_910838
700 1 _aPetrov, Vladimir
_c(Materials scientist),
_eauthor.
_916428
700 1 _aPetrov, Roman V.,
_eauthor.
_916429
700 1 _aTatarenko, Alexander S.,
_eauthor.
_916430
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429488672
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _cEBK
999 _c71254
_d71254