000 | 07430cam a2200313Ii 4500 | ||
---|---|---|---|
001 | 9780429078477 | ||
008 | 180706s1991 xx o 000 0 eng d | ||
020 |
_a9780429078477 _q(e-book : PDF) |
||
020 |
_z9780824785871 _q(hardback) |
||
024 | 7 |
_a10.1201/9781482277098 _2doi |
|
035 | _a(OCoLC)1027754329 | ||
040 |
_aFlBoTFG _cFlBoTFG _erda |
||
072 | 7 |
_aMAT029000 _2bisacsh |
|
100 | 1 |
_aBalakrishnan, N., _eauthor. _911139 |
|
245 | 1 | 0 |
_aHandbook of the Logistic Distribution / _cN. Balakrishnan. |
250 | _aFirst edition. | ||
264 | 1 |
_aBoca Raton, FL : _bCRC Press, _c1991. |
|
300 | _a1 online resource | ||
336 |
_atext _2rdacontent |
||
337 |
_acomputer _2rdamedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 0 | _aStatistics: A Series of Textbooks and Monographs | |
505 | 0 | 0 |
_tchapter 1 Introduction and Historical Remarks -- _tchapter L _.L._. -- _tchapter proximation isdiscussed tostudy the stationary distribution, theabsorption -- _tchapter 2 Logistic Order Statistics and Their Properties -- _t{P(zi)}i-l{1 -- _tchapter E(Zi E(Z7 -- _tchapter = a)I -- _tO<a<1. -- _tchapter + + + + r(i)r(n + + + -- _tchapter = + + + -- _tchapter the resulting equation. get -- _tchapter a: = a: + -- _tchapter moments other than the immediate upper-diagonal product moments, viz., < nand / _r(-I)k -- _tchapter 31 (_I)/(n / _r-1)k( -- _tchapter (I -k -1) Il\ -- _tchapter Proof. n -- _tchapter ••(ZI>F] z\\). -- _tchapter 3 Maximum Likelihood Estimation Based on Complete and Type II Censored Samples / _rN. Balakrishnan -- _tchapter a)/a -- _tchapter e;-[!*(Z,+1:,) ---a -- _t[!*(Z,+1:,) / _r.!.[_( -- _tchapter P. Zn-where ' -and expressing the -- _tchapter (see Gupta and others, and Chapter 4) by -- _tchapter = = = -- _tchapter n= r = s = -- _tchapter 4 Linear Estimation Based on Complete and Censored / _rSamples -- _tchapter 4 2 BEST LINEAR UNBIASED ESTIMATION BASED ON CENSORED SAMPLES N. Balakrishnan -- _tchapter I(laT aIT)p-1 -- _tchapter )/u by Gupta, Qureishi, Shah sample sizes (1)5(5)25 rand s. -- _tchapter.) = -- _tchapter = + = -- _tchapter. -. s, -- _tchapter 4 4 ESTIMATION OF QUANTILES USING STATISTICS A. K. Md. Ehsanes Saleh Khatab M. Hassanein -- _tchapter + (u/V3) + (u/V3) / _r:\\Xi(l -- _tchapter I), -- _tchapter ; r -- _tchapter. =. -- _tchapter K. K, §' K K, K K, K K, K -- _tchapter =. = S' -- _tchapter 5 Reliabil -- _tEstimation Based Complete Censored Samples -- _tchapter U6 fl - -- _tchapter metry of the logistic distribution, have the upper tolerance limit -- _tchapter + t,a, -- _tchapter = + = = -- _tchapter 5 6 ILLUSTRATIVE EXAMPLE -- _tchapter 6 Ranking and Selection Procedures -- _tchapter 0, = -- _tchapter reliability contexts, and a review these provided Gupta -- _tchapter 7 Characterizations --log -- _tchapter statesthat the logistic, andonly thelogistic, distributions have the property -- _tchapter = pr pi -- _tchapter tion, and let 1, be a sequence of sample with distributions -- _tchapter x, y -- _tchapter 8 Translated Families of Distributions -- _tchapter Vjf. Vjf. sVjf. -- _tchapter < If -- _tchapter If Eand 8 -- _t\\I'jf. \\I'jf. -- _tchapter Xp's {X p }. -- _tchapter 9 Univariate Generalized Distributions -- _tchapter (9.3.3) has a solution in a if and only if -2 < b, <, so that the -- _t;;-+l' / _r;=o:- -- _tchapter same asthe median relative to the ina normally distributed -- _tchapter 10 Some Related Distributions -- _tchapter < < > -- _tchapter 11 Multivariate Logistic Distributions -- _tchapter + p { _ + :2 -- _tchapter. -- _tchapter I <. -- _tchapter 11 4 OF EXTREMES -V -- _tchapter LJ· LJ· -- _tUz-,/ -- _tchapter + + + + -- _tchapter 11 7 FARLlE·GUMBEL·MORGENSTERN DISTRIBUTIONS -- _tchapter Z· Z· -- _tchapter 12 Outlier and Robustness of Estimators -- _tchapter + •• -- _tchapter < s + > x + -- _tchapter for; -- _tchapter x, f(x -- _tchapter 12 5 ROBUSTNESS OF ESTIMATORS OF AND -- _tchapter + 0\ -- _tchapter 12 5.2 Estimators of the Standard Deviation a -- _tchapter = 1)} ' -- _tchapter 13 Goodness-of-Fit Tests -- _tchapter F\ -- _tchapter y= tl = x. -- _tchapter.0.0.0 -- _tchapter 13 4 EXAMPLES OF LOGISTIC PROBABILITY Figure 13.4.1 probability plot of the of the -- _tchapter • • • -- _tchapter 3 2 -- _tchapter 13 9.3 Estimation of by the Ungrouped MLE (tl. / _r-.!- -- _tchapter = = = = = -- _tchapter 13 10 STATISTICS 13.10.1 Introduction = #(X -- _tchapter G(t) t, -s t :s 1. -- _tchapter W;.• -- _tchapter, :\ -- _tchapter Statistic -- _tHypothesis- -- _tchapter X X\ -- _tchapter + -3 • -- _tchapter n.u.i -- _tchapter APPENDIX VIII. UNI Data Set -- _tchapter 14 Tolerance Limits and Sampling Plans Based on Censored Samples -- _tchapter determining the tolerance limits developed in the earlier sections. 14.2 ONE-SIDED TOLERANCE LIMITS :s :s -- _tchapter _v'3 -- _tchapter = [ { -- _tchapter 14 5 ACCEPTANCE SAMPLING PLANS -- _tchapter 15 Logistic Stochastic Growth Models and Applications -- _tchapter If = -- _tchapter 15 2 SOME STOCHASTIC LOGISTIC GROWTH MODELS -- _tchapter + x + + -- _tchapter = [1'\ -- _tchapter = 1>[1 -- _tchapter + 1] -- _tchapter v =T i / _r(iZi) -- _tchapter 15 4.2 Absorption Probability Distribution and Moments of First Absorption Times s s Mare -- _tchapter = = = -- _tchapter = t),; = -- _tchapter + = -I, -- _tchapter APPENDIX ':,. i = v=I -- _tchapter 16 Logistic Growth Models and Related Problems -- _tchapter I {y; -f(x;. 6)F -- _tchapter <. s -- _tchapter = \ / _r-lIa(EC -- _tchapter If.we. -- _tchapter = < = = -- _tchapter m, It -- _tchapter 17 Applications in Health and Social Sciences -- _tchapter =. -- _tIn(::) -- _tchapter ponent anda lack-of-fit component. the model accounts tor the variation -- _tchapter 17 7 GOODNESS-OF FIT TESTS THE LOGISTIC DISTRIBUTION = + )J -- _tchapter 18 Some Other Applications -- _tchapter this section. The data to be analyzed are ornithological data -- _tchapter 18 2.2 Results m-almost -- _tm-a.s -- _tchapter APPENDIX 18.2.A The Log Gamma Distribution -- _tchapter 18 2.B standard generalized logistic -- _tchapter 18 3.2 Estimator of -- _tchapter + '( -')2 -- _tchapter )F, -- _tchapter o : ; = ; = -- _tchapter + rsL. -- _tchapter least-maximum approximant -- _tchapter 18 5.2 Logistic Equation / _rO<b<l, -- _tchapter reaction, latter external substrata level controls growth -- _tchapter Kumar (l990a). -- _tchapter 8 30-57. -- _tchapter Bibliography -- _tchapter of symmetrically truncated logistic distribution. -- _tchapter erators, -- _tchapter y/nvestigacion Operativa, 3/,232-245. -- _tchapter University Minnesota, Minneapolis, Minnesota. -- _tchapter of the United States and mathematical representation -- _tchapter Ann. -- _tchapter Canadian precipitation data. Suuist., 226. -- _tchapter moments and marginals. Amer. Assoc, 82-86. -- _tchapter Methodology forthedifferential diagnosis complex dataset: A -- _tchapter Author Index -- _tchapter Greenberg, B. G., -- _tchapter Petunin. I. 186.574 Reed. J.• 16.398.424.427. -- _tchapter Tritchler. D. L. 464-466. Walker. S. H., -- _tchapter Subject Index -- _tchapter alized) distribution. samples, 80-82 -- _tchapter functional behavior ofordersta- indifference approach. 151-. |
650 | 0 | 4 |
_aStatistical Theory & Methods _911140 |
650 | 0 |
_aMathematical statistics. _99597 |
|
776 | 0 | 8 |
_iPrint version: _z9780824785871 _w(DLC) 91035297 |
856 | 4 | 0 |
_uhttps://www.taylorfrancis.com/books/9781482277098 _zClick here to view. |
942 | _cEBK | ||
999 |
_c69889 _d69889 |