000 04290cam a22005778i 4500
001 on1159637140
003 OCoLC
005 20220711203641.0
006 m o d
007 cr |||||||||||
008 200603s2020 nju ob 000 0 eng
010 _a 2020025377
040 _aDLC
_beng
_erda
_cDLC
_dOCLCF
_dOCLCO
_dDG1
020 _a9781118380055
_q(electronic bk. : oBook)
020 _a1118380053
_q(electronic bk. : oBook)
020 _a9781118380079
_q(epub)
020 _a111838007X
_q(epub)
020 _a9781118380062
_q(adobe pdf)
020 _a1118380061
_q(adobe pdf)
020 _z9781118380048
_q(hardback)
029 1 _aAU@
_b000067284822
035 _a(OCoLC)1159637140
042 _apcc
050 0 0 _aTJ262
082 0 0 _a621.402/5
_223
049 _aMAIN
100 1 _aZhang, Xin-Rong,
_d1973-
_eauthor.
_99629
245 1 0 _aTranscritical CO2 heat pump :
_bfundamentals and applications /
_cXin-Rong Zhang, Department of Energy & Resources Engineering, College of Engineering Peking University, Beijing, China, Hiroshi Yamaguchi, Energy Conversion Research Center, Doshisha University Kyoto, Japan.
250 _aFirst edition.
263 _a2011
264 1 _aHoboken, NJ, USA :
_bJohn Wiley & Sons,
_c2020.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references.
520 _a"CO2 is a non-flammable natural fluid with no Ozone Depletion Potential (ODP) and a negligible Global Warming Potential (GWP). Conversely, CO2 is currently responsible for over 60% of the greenhouse effect. An effective way of relieving the greenhouse effect is by recycling CO2 and using it as refrigerant, which can also be considered as a kind of CO2 capture and storage. In addition, the CO2 thermodynamic and transport properties seem to be favorable in terms of heat transfer and pressure drop, compared to other typical refrigerants. Because of these advantages, CO2 fluid has received much attention in recent years in some new energy systems, especially in CO2 trans-critical compression refrigeration thermodynamics cycle of air conditioners, and heat pumps. CO2 refrigeration and heat pump is an on-going technology, and is expected to be at the forefront of the future refrigeration and heat pump field and market. The authors explore the basic theory of thermodynamic cycles of heat pump, following with a description of the properties of CO2. Examples of CO2 application are explored, enabling the reader to follow the progression of the topic from analysis to practical usage"--
_cProvided by publisher.
505 0 _aIntroduction / Xin-Rong Zhang -- Current Development of CO2 Heat Pump / Hiroshi Yamaguchi, Xin-Rong Zhang -- Fluid Dynamics and Heat Transfer of Supercritical Carbon Dioxide Cooling / Brian M Fronk -- Boiling Flow and Heat Transfer of CO2 in an Evaporator / Haruhiko Yamasaki -- Theoretical Analysis of the CO2 Expansion Process / Ammar M Bahman, Riley B Barta, Eckhard A Groll, Davide Ziviani -- Transcritical Carbon Dioxide Compressors / Xin-Rong Zhang -- CO 2 Subcooling / Rodrigo Llopis, Daniel Sanchez, Laura Nebot-Andres, Jesus Catalon-Gil, Ramon Cabello -- High Temperature CO2 Heat Pump System and Optimization / Lin Chen, Dipankar N Basu -- Performance Analysis and Optimization of a CO2 Heat Pump Water Heating System / Ryohei Yokoyama -- Transcritical CO2 Heat Pump Space Heating / Feng Cao, Yulong Song.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
590 _bWiley Frontlist Obook All English 2021
650 0 _aHeat pumps.
_99630
650 0 _aCarbon dioxide.
_99631
650 7 _aCarbon dioxide
_2fast
_0(OCoLC)fst00846814
_99631
650 7 _aHeat pumps
_2fast
_0(OCoLC)fst00953919
_99630
655 4 _aElectronic books.
_93294
700 1 _aYamaguchi, H.
_q(Hiroshi),
_d1952-
_eauthor.
_99632
776 0 8 _iPrint version:
_aZhang, Xin-Rong, 1973-
_tTranscritical CO2 heat pump
_bFirst edition.
_dHoboken, NJ, USA : John Wiley & Sons, 2020.
_z9781118380048
_w(DLC) 2020025376
856 4 0 _uhttps://doi.org/10.1002/9781118380055
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69457
_d69457