000 06287cam a2200733 i 4500
001 on1057238048
003 OCoLC
005 20220711203548.0
006 m o d
007 cr |||||||||||
008 181009t20192019njua ob 001 0 eng
010 _a 2018047949
040 _aDLC
_beng
_erda
_epn
_cDLC
_dOCLCO
_dOCLCF
_dDG1
_dN$T
_dYDX
_dRECBK
_dUKMGB
_dEBLCP
_dOCLCQ
015 _aGBB938058
_2bnb
016 7 _a019269532
_2Uk
019 _a1090426790
_a1090499652
_a1090543366
_a1090752829
_a1090762750
020 _a9781119457770
_q(electronic book)
020 _a1119457777
_q(electronic book)
020 _a9781119457787
_q(electronic publication)
020 _a1119457785
_q(electronic publication)
020 _a9781119457695
_q(electronic book)
020 _a1119457696
_q(electronic book)
020 _z9781119457763
_q(hardcover)
020 _z1119457769
029 1 _aAU@
_b000064319362
029 1 _aCHNEW
_b001048766
029 1 _aCHVBK
_b565571656
029 1 _aUKMGB
_b019269532
035 _a(OCoLC)1057238048
_z(OCoLC)1090426790
_z(OCoLC)1090499652
_z(OCoLC)1090543366
_z(OCoLC)1090752829
_z(OCoLC)1090762750
037 _a9781119457787
_bWiley
042 _apcc
050 1 4 _aTK5102.9
_b.C3195 2019
072 7 _aTEC
_x009070
_2bisacsh
082 0 0 _a621.382/23
_223
049 _aMAIN
100 1 _aCandy, James V.,
_eauthor.
_98819
245 1 0 _aModel-based processing :
_ban applied subspace identification approach /
_cJames V. Candy, Lawrence Livermore National Laboratory, University of California Santa Barbara.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2019.
264 4 _c©2019
300 _a1 online resource (xxv, 511 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a"Provides a model-based "bridge" for signal processors/control engineers enabling a coupling and motivation for model development and subsequent processor designs/applications - Incorporates an in-depth treatment of the subspace approach that applies a variety of the subspace algorithm to synthesized examples and actual applications - Introduces new, fast subspace identifiers, capable of developing the required model for processing/controls Market description: Primary audience: advanced seniors, 1st year graduate student (engineering, sciences) Secondary audience: engineering professionals"--
_cProvided by publisher.
588 0 _aOnline resource; title from digital title page (viewed on April 01, 2019).
505 0 _aCover; Title Page; Copyright; Contents; Preface; Acknowledgements; Glossary; Chapter 1 Introduction; 1.1 Background; 1.2 Signal Estimation; 1.3 Model-Based Processing; 1.4 Model-Based Identification; 1.5 Subspace Identification; 1.6 Notation and Terminology; 1.7 Summary; MATLAB Notes; References; Problems; Chapter 2 Random Signals and Systems; 2.1 Introduction; 2.2 Discrete Random Signals; 2.3 Spectral Representation of Random Signals; 2.4 Discrete Systems with Random Inputs; 2.4.1 Spectral Theorems; 2.4.2 ARMAX Modeling; 2.5 Spectral Estimation
505 8 _a2.5.1 Classical (Nonparametric) Spectral Estimation2.5.1.1 Correlation Method (Blackman-Tukey); 2.5.1.2 Average Periodogram Method (Welch); 2.5.2 Modern (Parametric) Spectral Estimation; 2.5.2.1 Autoregressive (All-Pole) Spectral Estimation; 2.5.2.2 Autoregressive Moving Average Spectral Estimation; 2.5.2.3 Minimum Variance Distortionless Response (MVDR) Spectral Estimation; 2.5.2.4 Multiple Signal Classification (MUSIC) Spectral Estimation; 2.6 Case Study: Spectral Estimation of Bandpass Sinusoids; 2.7 Summary; Matlab Notes; References; Problems
505 8 _aChapter 3 State-Space Models for Identification3.1 Introduction; 3.2 Continuous-Time State-Space Models; 3.3 Sampled-Data State-Space Models; 3.4 Discrete-Time State-Space Models; 3.4.1 Linear Discrete Time-Invariant Systems; 3.4.2 Discrete Systems Theory; 3.4.3 Equivalent Linear Systems; 3.4.4 Stable Linear Systems; 3.5 Gauss-Markov State-Space Models; 3.5.1 Discrete-Time Gauss-Markov Models; 3.6 Innovations Model; 3.7 State-Space Model Structures; 3.7.1 Time-Series Models; 3.7.2 State-Space and Time-Series Equivalence Models; 3.8 Nonlinear (Approximate) Gauss-Markov State-Space Models
505 8 _a3.9 SummaryMATLAB Notes; References; Chapter 4 Model-Based Processors; 4.1 Introduction; 4.2 Linear Model-Based Processor: Kalman Filter; 4.2.1 Innovations Approach; 4.2.2 Bayesian Approach; 4.2.3 Innovations Sequence; 4.2.4 Practical Linear Kalman Filter Design: Performance Analysis; 4.2.5 Steady-State Kalman Filter; 4.2.6 Kalman Filter/Wiener Filter Equivalence; 4.3 Nonlinear State-Space Model-Based Processors; 4.3.1 Nonlinear Model-Based Processor: Linearized Kalman Filter; 4.3.2 Nonlinear Model-Based Processor: Extended Kalman Filter
505 8 _a4.3.3 Nonlinear Model-Based Processor: Iterated-Extended Kalman Filter4.3.4 Nonlinear Model-Based Processor: Unscented Kalman Filter; 4.3.5 Practical Nonlinear Model-Based Processor Design: Performance Analysis; 4.3.6 Nonlinear Model-Based Processor: Particle Filter; 4.3.7 Practical Bayesian Model-Based Design: Performance Analysis; 4.4 Case Study: 2D-Tracking Problem; 4.5 Summary; MATLAB Notes; References; Problems; Chapter 5 Parametrically Adaptive Processors; 5.1 Introduction; 5.2 Parametrically Adaptive Processors: Bayesian Approach
650 0 _aSignal processing
_xDigital techniques
_xMathematics.
_97229
650 0 _aAutomatic control
_xMathematical models.
_97898
650 0 _aInvariant subspaces.
_98820
650 7 _aTECHNOLOGY & ENGINEERING
_xMechanical.
_2bisacsh
_98821
650 7 _aAutomatic control
_xMathematical models.
_2fast
_0(OCoLC)fst00822712
_97898
650 7 _aInvariant subspaces.
_2fast
_0(OCoLC)fst00977981
_98820
650 7 _aSignal processing
_xDigital techniques
_xMathematics.
_2fast
_0(OCoLC)fst01118294
_97229
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aCandy, James V.
_tModel-based processing.
_dHoboken, NJ : John Wiley & Sons, Inc., [2018]
_z9781119457763
_w(DLC) 2018044855
856 4 0 _uhttps://doi.org/10.1002/9781119457695
_zWiley Online Library
942 _cEBK
994 _aC0
_bDG1
999 _c69209
_d69209