000 12324nam a2201201 i 4500
001 5236499
003 IEEE
005 20200421114110.0
006 m o d
007 cr |n|||||||||
008 151221s2006 njua ob 001 eng d
020 _a9780471784197
_qelectronic
020 _z9780471761020
_qprint
020 _z0471784192
_qelectronic
024 7 _a10.1002/0471784192
_2doi
035 _a(CaBNVSL)mat05236499
035 _a(IDAMS)0b00006481094b08
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC760
_b.M48 2006eb
082 0 4 _a620.11297
_222
245 0 0 _aMetamaterials :
_bphysics and engineering explorations /
_cedited by Nader Engheta, Richard W. Ziolkowski.
264 1 _aHoboken, New Jersey :
_bWiley-Interscience,
_c2006.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2006]
300 _a1 PDF (xxi, 414 pages) :
_billustrations (chiefly col.).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
500 _aAt foot of title: IEEE.
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- Contributors -- PART I: DOUBLE-NEGATIVE (DNG) METAMATERIALS -- SECTION I: THREE-DIMENSIONAL VOLUMETRIC DNG METAMATERIALS -- CHAPTER 1: INTRODUCTION, HISTORY, AND SELECTED TOPICS IN FUNDAMENTAL THEORIES OF METAMATERIALS (Richard W. Ziolkowski and Nader Engheta) -- 1.1 Introduction -- 1.2 Wave Parameters in DNG Media -- 1.3 FDTD Simulations of DNG Media -- 1.4 Causality in DNG Media -- 1.5 Scattering from a DNG Slab -- 1.6 Backward Waves -- 1.7 Negative Refraction -- 1.8 Phase Compensation with a DNG Medium -- 1.9 Dispersion Compensation in a Transmission Line Using a DNG Medium -- 1.10 Subwavelength Focusing with a DNG Medium -- 1.11 Metamaterials with a Zero Index of Refraction -- 1.12 Summary -- References -- CHAPTER 2: FUNDAMENTALS OF WAVEGUIDE AND ANTENNA APPLICATIONS INVOLVING DNG AND SNG METAMATERIALS (Nader Engheta, Andrea Al , Richard W. Ziolkowski, and Aycan Erentok) -- 2.1 Introduction -- 2.2 Subwavelength Cavities and Waveguides -- 2.3 Subwavelength Cylindrical and Spherical Core-Shell Systems -- 2.4 ENG-MNG and DPS-DNG Matched Metamaterial Pairs for Resonant Enhancements of Source-Generated Fields -- 2.5 Efficient, Electrically Small Dipole Antennas: DNG Nested Shells -- 2.6 Efficient, Electrically Small Dipole Antennas: ENG Nested Shells-Analysis -- 2.7 Efficient, Electrically Small Dipole Antennas: HFSS Simulations of Dipole-ENG Shell Systems -- 2.8 Metamaterial Realization of an Artificial Magnetic Conductor for Antenna Applications -- 2.9 Zero-Index Metamaterials for Antenna Applications -- 2.10 Summary -- References -- CHAPTER 3: WAVEGUIDE EXPERIMENTS TO CHARACTERIZE PROPERTIES OF SNG AND DNG METAMATERIALS (Silvio Hrabar) -- 3.1 Introduction -- 3.2 Basic Types of Bulk Metamaterials with Inclusions -- 3.3 Theoretical Analysis of Rectangular Waveguide Filled with General Metamaterial -- 3.4 Investigation of Rectangular Waveguide Filled with 2D Isotropic ENG Metamaterial -- 3.5 Investigation of Rectangular Waveguide Filled with 2D Isotropic MNG Metamaterial.
505 8 _a3.6 Investigation of Rectangular Waveguide Filled with 2D Uniaxial MNG Metamaterial -- 3.7 Investigation of Rectangular Waveguide Filled with 2D Isotropic DNG Metamaterial -- 3.8 Investigation of Subwavelength Resonator -- 3.9 Conclusions -- References -- CHAPTER 4: REFRACTION EXPERIMENTS IN WAVEGUIDE ENVIRONMENTS (Tomasz M. Grzegorczyk, Jin Au Kong, and Ran Lixin) -- 4.1 Introduction -- 4.2 Microscopic and Macroscopic Views of Metamaterials -- 4.3 Measurement Techniques -- 4.4 Conclusion -- Acknowledgments -- References -- SECTION II: TWO-DIMENSIONAL PLANAR NEGATIVE-INDEX STRUCTURES -- CHAPTER 5: ANTENNA APPLICATIONS AND SUBWAVELENGTH FOCUSING USING NEGATIVE-REFRACTIVE-INDEX TRANSMISSION LINE STRUCTURES (George V. Eleftheriades) -- 5.1 Introduction -- 5.2 Planar Transmission Line Media with Negative Refractive Index -- 5.3 Zero-Degree Phase-Shifting Lines and Applications -- 5.4 Backward Leaky-Wave Antenna Radiating in Its Fundamental Spatial Harmonic -- 5.5 Superresolving NRI Transmission Line Lens -- 5.6 Detailed Dispersion of Planar NRI-TL Media -- Acknowledgments -- References -- CHAPTER 6: RESONANCE CONE ANTENNAS (Keith G. Balmain and Andrea A. E. L ttgen) -- 6.1 Introduction -- 6.2 Planar Metamaterial, Corner-Fed, Anisotropic Grid Antenna -- 6.3 Resonance Cone Refraction Effects in a Low-Profile Antenna -- 6.4 Conclusions -- Acknowledgments -- References -- CHAPTER 7: MICROWAVE COUPLER AND RESONATOR APPLICATIONS OF NRI PLANAR STRUCTURES (Christophe Caloz and Tatsuo Itoh) -- 7.1 Introduction -- 7.2 Composite Right/Left-Handed Transmission Line Metamaterials -- 7.3 Metamaterial Couplers -- 7.4 Metamaterial Resonators -- 7.5 Conclusions -- References -- PART II: ELECTROMAGNETIC BANDGAP (EBG) METAMATERIALS -- SECTION I: THREE-DIMENSIONAL VOLUMETRIC EBG MEDIA -- CHAPTER 8: HISTORICAL PERSPECTIVE AND REVIEW OF FUNDAMENTAL PRINCIPLES IN MODELING THREE-DIMENSIONAL PERIODIC STRUCTURES WITH EMPHASIS ON VOLUMETRIC EBGs (Maria Kafesaki and Costas M. Soukoulis) -- 8.1 Introduction.
505 8 _a8.2 Theoretical and Numerical Methods -- 8.3 Comparison of Different Numerical Techniques -- 8.4 Conclusions -- Acknowledgments -- References -- CHAPTER 9: FABRICATION, EXPERIMENTATION, AND APPLICATIONS OF EBG STRUCTURES (Peter de Maagt and Peter Huggard) -- 9.1 Introduction -- 9.2 Manufacturing -- 9.3 Experimental Characterization of EBG Crystals -- 9.4 Current and Future Applications of EBG Systems -- 9.5 Conclusions -- References -- CHAPTER 10: SUPERPRISM EFFECTS AND EBG ANTENNA APPLICATIONS (Boris Gralak, Stefan Enoch, and G erard Tayeb) -- 10.1 Introduction -- 10.2 Refractive Properties of a Piece of Photonic Crystal -- 10.3 Superprism Effect -- 10.4 Antenna Applications -- 10.5 Conclusion -- References -- SECTION II: TWO-DIMENSIONAL PLANAR EBG STRUCTURES -- CHAPTER 11: REVIEW OF THEORY, FABRICATION, AND APPLICATIONS OF HIGH-IMPEDANCE GROUND PLANES (Dan Sievenpiper) -- 11.1 Introduction -- 11.2 Surface Waves -- 11.3 High-Impedance Surfaces -- 11.4 Surface Wave Bands -- 11.5 Reflection Phase -- 11.6 Bandwidth -- 11.7 Design Procedure -- 11.8 Antenna Applications -- 11.9 Tunable Impedance Surfaces -- 11.10 Reflective-Beam Steering -- 11.11 Leaky-Wave Beam Steering -- 11.12 Backward Bands -- 11.13 Summary -- References -- CHAPTER 12: DEVELOPMENT OF COMPLEX ARTIFICIAL GROUND PLANES IN ANTENNA ENGINEERING (Yahya Rahmat-Samii and Fan Yang) -- 12.1 Introduction -- 12.2 FDTD Analysis of Complex Artificial Ground Planes -- 12.3 Various Complex Artificial Ground-Plane Designs -- 12.4 Applications of Artificial Ground Planes in Antenna Engineering -- 12.5 Summary -- References -- CHAPTER 13: FSS-BASED EBG SURFACES (Stefano Maci and Alessio Cucini) -- 13.1 Introduction -- 13.2 MoM Solution -- 13.3 Accessible Mode Admittance Network -- 13.4 Pole-Zero Matching Method for Dispersion Analysis -- 13.5 Conclusions -- Acknowledgments -- References -- CHAPTER 14: SPACE-FILLING CURVE HIGH-IMPEDANCE GROUND PLANES (John McVay, Nader Engheta, and Ahmad Hoorfar) -- 14.1 Resonances of Space-Filling Curve Elements.
505 8 _a14.2 High-Impedance Surfaces Made of Space-Filling Curve Inclusions -- 14.3 Use of Space-Filling Curve High-Impedance Surfaces in Antenna Applications -- 14.4 Space-Filling Curve Elements as Inclusions in DNG Bulk Media -- 14.5 Conclusions -- References -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aLeading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aMetamaterials.
650 0 _aElectromagnetism.
655 0 _aElectronic books.
695 _aAntenna feeds
695 _aAntennas
695 _aArrays
695 _aBandwidth
695 _aBars
695 _aCapacitors
695 _aCavity resonators
695 _aCorrugated surfaces
695 _aDiamond-like carbon
695 _aDielectrics
695 _aDispersion
695 _aElectromagnetic waveguides
695 _aElectromagnetics
695 _aFinite difference methods
695 _aFourier transforms
695 _aFrequency selective surfaces
695 _aHarmonic analysis
695 _aImpedance
695 _aIndexes
695 _aInductors
695 _aIntegrated circuit modeling
695 _aLeaky wave antennas
695 _aLenses
695 _aMagnetic materials
695 _aMagnetic moments
695 _aMagnetic resonance imaging
695 _aMathematical model
695 _aMedia
695 _aMetallization
695 _aMetals
695 _aMetamaterials
695 _aMicroscopy
695 _aMicrostrip antennas
695 _aMicrowave circuits
695 _aMoment methods
695 _aOptical device fabrication
695 _aOptical surface waves
695 _aPeriodic structures
695 _aPermeability
695 _aPermittivity
695 _aPhotonic band gap
695 _aPhotonic crystals
695 _aPlanar transmission lines
695 _aPlasmas
695 _aRefractive index
695 _aResonant frequency
695 _aSlabs
695 _aSurface impedance
695 _aSurface texture
695 _aSurface waves
695 _aThree dimensional displays
695 _aWire
695 _aWires
700 1 _aEngheta, N.
_q(Nader)
700 1 _aZiolkowski, Richard W.
710 2 _aJohn Wiley & Sons,
_epublisher.
710 2 _aInstitute of Electrical and Electronics Engineers.
710 2 _aIEEE Xplore (Online service),
_edistributor.
776 0 8 _iPrint version:
_z9780471761020
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236499
942 _cEBK
999 _c59307
_d59307