000 | 02920nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-319-07416-0 | ||
003 | DE-He213 | ||
005 | 20200421112226.0 | ||
007 | cr nn 008mamaa | ||
008 | 140828s2014 gw | s |||| 0|eng d | ||
020 |
_a9783319074160 _9978-3-319-07416-0 |
||
024 | 7 |
_a10.1007/978-3-319-07416-0 _2doi |
|
050 | 4 | _aT385 | |
050 | 4 | _aTA1637-1638 | |
050 | 4 | _aTK7882.P3 | |
072 | 7 |
_aUYQV _2bicssc |
|
072 | 7 |
_aCOM016000 _2bisacsh |
|
082 | 0 | 4 |
_a006.6 _223 |
100 | 1 |
_aHe, Ran. _eauthor. |
|
245 | 1 | 0 |
_aRobust Recognition via Information Theoretic Learning _h[electronic resource] / _cby Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2014. |
|
300 |
_aXI, 110 p. 29 illus., 25 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringerBriefs in Computer Science, _x2191-5768 |
|
505 | 0 | _aIntroduction -- M-estimators and Half-quadratic Minimization -- Information Measures -- Correntropy and Linear Representation -- �1 Regularized Correntropy -- Correntropy with Nonnegative Constraint. | |
520 | _aThis Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems. | ||
650 | 0 | _aComputer science. | |
650 | 0 | _aComputer graphics. | |
650 | 0 | _aImage processing. | |
650 | 1 | 4 | _aComputer Science. |
650 | 2 | 4 | _aComputer Imaging, Vision, Pattern Recognition and Graphics. |
650 | 2 | 4 | _aImage Processing and Computer Vision. |
700 | 1 |
_aHu, Baogang. _eauthor. |
|
700 | 1 |
_aYuan, Xiaotong. _eauthor. |
|
700 | 1 |
_aWang, Liang. _eauthor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319074153 |
830 | 0 |
_aSpringerBriefs in Computer Science, _x2191-5768 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-07416-0 |
912 | _aZDB-2-SCS | ||
942 | _cEBK | ||
999 |
_c57681 _d57681 |