000 02960nam a22004935i 4500
001 978-1-4614-4457-2
003 DE-He213
005 20200421112038.0
007 cr nn 008mamaa
008 121117s2013 xxu| s |||| 0|eng d
020 _a9781461444572
_9978-1-4614-4457-2
024 7 _a10.1007/978-1-4614-4457-2
_2doi
050 4 _aTK1-9971
072 7 _aTJK
_2bicssc
072 7 _aTEC041000
_2bisacsh
082 0 4 _a621.382
_223
245 1 0 _aGraph Embedding for Pattern Analysis
_h[electronic resource] /
_cedited by Yun Fu, Yunqian Ma.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aVIII, 260 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aMultilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces -- Feature Grouping and Selection over an Undirected Graph -- Median Graph Computation by Means of Graph Embedding into Vector Spaces -- Patch Alignment for Graph Embedding -- Feature Subspace Transformations for Enhancing K-Means Clustering -- Learning with �1-Graph for High Dimensional Data Analysis -- Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual Recognition -- A Flexible and Effective Linearization Method for Subspace Learning -- A Multi-Graph Spectral Approach for Mining Multi-Source Anomalies -- Graph Embedding for Speaker Recognition.
520 _aGraph Embedding for Pattern Analysis covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
650 0 _aEngineering.
650 0 _aArtificial intelligence.
650 0 _aPattern recognition.
650 0 _aElectrical engineering.
650 1 4 _aEngineering.
650 2 4 _aCommunications Engineering, Networks.
650 2 4 _aPattern Recognition.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aSignal, Image and Speech Processing.
700 1 _aFu, Yun.
_eeditor.
700 1 _aMa, Yunqian.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461444565
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-4457-2
912 _aZDB-2-ENG
942 _cEBK
999 _c56454
_d56454