000 03073nam a22005655i 4500
001 978-3-319-05642-5
003 DE-He213
005 20200421111844.0
007 cr nn 008mamaa
008 140412s2014 gw | s |||| 0|eng d
020 _a9783319056425
_9978-3-319-05642-5
024 7 _a10.1007/978-3-319-05642-5
_2doi
050 4 _aTA1637-1638
050 4 _aTA1634
072 7 _aUYT
_2bicssc
072 7 _aUYQV
_2bicssc
072 7 _aCOM012000
_2bisacsh
072 7 _aCOM016000
_2bisacsh
082 0 4 _a006.6
_223
082 0 4 _a006.37
_223
100 1 _aLi, Jia.
_eauthor.
245 1 0 _aVisual Saliency Computation
_h[electronic resource] :
_bA Machine Learning Perspective /
_cby Jia Li, Wen Gao.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2014.
300 _aXII, 240 p. 100 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v8408
505 0 _aBenchmark and evaluation metrics -- Location-based visual saliency computation -- Object-based visual saliency computation -- Learning-based visual saliency computation -- Mining cluster-specific knowledge for saliency ranking -- Removing label ambiguity  in training saliency model -- Saliency-based applications -- Conclusions and future work.
520 _aThis book covers fundamental principles and computational approaches relevant to visual saliency computation. As an interdisciplinary problem, visual saliency computation is introduced in this book from an innovative perspective that combines both neurobiology and machine learning. The book is also well-structured to address a wide range of readers, from specialists in the field to general readers interested in computer science and cognitive psychology. With this book, a reader can start from the very basic question of "what is visual saliency?" and progressively explore the problems in detecting salient locations, extracting salient objects, learning prior knowledge, evaluating performance, and using saliency in real-world applications. It is highly expected that this book will spark a great interest of research in the related communities in years to come.
650 0 _aComputer science.
650 0 _aData mining.
650 0 _aArtificial intelligence.
650 0 _aImage processing.
650 1 4 _aComputer Science.
650 2 4 _aImage Processing and Computer Vision.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aData Mining and Knowledge Discovery.
700 1 _aGao, Wen.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319056418
830 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v8408
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-05642-5
912 _aZDB-2-SCS
912 _aZDB-2-LNC
942 _cEBK
999 _c55722
_d55722