Srivastava, Ashok N.,

Large-Scale Machine Learning in the Earth Sciences / Ashok N. Srivastava. - First edition. - 1 online resource : text file, PDF. - Chapman & Hall/CRC Data Mining and Knowledge Discovery Series .

Chapter 1 Network Science Perspectives on Engineering Adaptation to Climate Change and Weather Extremes / chapter 2 Structured Estimation in High Dimensions -- Applications in Climate / chapter 3 Spatiotemporal Global Climate Model Tracking / chapter 4 Statistical Downscaling in Climate with State-of-the-Art Scalable Machine Learning / chapter 5 Large-Scale Machine Learning for Species Distributions / chapter 6 Using Large-Scale Machine Learning to Improve Our Understanding of the Formation of Tornadoes / chapter 7 Deep Learning for Very High-Resolution Imagery Classification / chapter 8 Unmixing Algorithms -- A Review of Techniques for Spectral Detection and Classification of Land Cover from Mixed Pixels on NASA Earth Exchange / chapter 9 Semantic Interoperability of Long-Tail Geoscience Resources over the Web / Udit Bhatia Auroop R. Ganguly -- André R Goncalves Arindam Banerjee Vidyashankar Sivakumar Soumyadeep Chatterjee -- Scott McQuade Claire Monteleoni -- Thomas Vandal Udit Bhatia Auroop R. Ganguly -- Reid A. Johnson Jason D. K. Dzurisin Nitesh V. Chawla -- Amy McGovern Corey Potvin Rodger A. Brown -- Sangram Ganguly Saikat Basu Ramakrishna Nemani Supratik Mukhopadhyay Andrew Michaelis Petr Votava Cristina Milesi Uttam Kumar -- Uttam Kumar Cristina Milesi S. Kumar Raja Ramakrishna Nemani Sangram Ganguly Weile Wang Petr Votava Andrew Michaelis Saikat Basu -- Mostafa M. Elag Praveen Kumar Luigi Marini Scott D. Peckham Rui Liu.

"From the Foreword:"While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by AshokSrivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest ... I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences."--Vipin Kumar, University of MinnesotaLarge-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book."--Provided by publisher.

9781315371740 131537174X 9781498703888 1498703887 9781315335407 1315335409 9781498703871 1498703879


COMPUTERS--Machine Theory.
SCIENCE--Earth Sciences--General.
Earth sciences--Computer network resources.
Earth sciences--Data processing.

QE48.87 / S658 2016

550.2856312