Normal view MARC view ISBD view

Embedded Deep Learning [electronic resource] : Algorithms, Architectures and Circuits for Always-on Neural Network Processing / by Bert Moons, Daniel Bankman, Marian Verhelst.

By: Moons, Bert [author.].
Contributor(s): Bankman, Daniel [author.] | Verhelst, Marian [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing : Imprint: Springer, 2019Edition: 1st ed. 2019.Description: XVI, 206 p. 124 illus., 92 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319992235.Subject(s): Electronic circuits | Signal processing | Electronics | Electronic Circuits and Systems | Signal, Speech and Image Processing | Electronics and Microelectronics, InstrumentationAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Chapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work.
In: Springer Nature eBookSummary: This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.
    average rating: 0.0 (0 votes)
No physical items for this record

Chapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work.

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.

There are no comments for this item.

Log in to your account to post a comment.