Normal view MARC view ISBD view

Molecular beam epitaxy : materials and applications for electronics and optoelectronics / edited by Hajime Asahi (ISIR, Osaka University, Japan), Yoshiji Horikoshi (Waseda University, Tokyo, Japan).

Contributor(s): Asahi, Hajime, 1948- [editor.] | Horikoshi, Yoshiji, 1943- [editor.] | IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: materialTypeLabelBookSeries: Wiley series in materials for electronic and optoelectronic applications: Publisher: Hoboken, New Jersey : John Wiley & Sons, Inc., 2019Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2019]Edition: First edition.Description: 1 PDF (512 pages).Content type: text Media type: electronic Carrier type: online resourceISBN: 9781119354987.Subject(s): Molecular beam epitaxy | Epitaxy | Crystal growth | Electronics -- Materials | Optoelectronics -- Materials | Crystal growth | Electronics -- Materials | Epitaxy | Molecular beam epitaxy | Optoelectronics -- MaterialsGenre/Form: Electronic books.Additional physical formats: Print version:: Molecular beam epitaxyDDC classification: 621.3815/2 Online resources: Abstract with links to resource Also available in print.
Contents:
List of Contributors xv -- Series Preface xix -- Preface xxi -- Part I Fundamentals of MBE 1 -- 1. History of MBE 3 /Tom Foxon -- 1.1 Introduction 3 -- 1.2 The MBE Process 4 -- 1.3 Controlled n and p Doping 10 -- 1.4 Modified Growth Procedures 10 -- 1.5 Gas-Source MBE 11 -- 1.6 Low-Dimensional Structures 11 -- 1.7 III-V Nitrides, Phosphides, Antimonides and Bismides and Other Materials 13 -- 1.8 Early MBE-Grown Devices 18 -- 1.9 Summary 18 -- Acknowledgments 18 -- References 19 -- 2. General Description of MBE 23 /Yoshiji Horikoshi -- 2.1 Introduction 23 -- 2.2 High-Vacuum Chamber System 24 -- 2.3 Atomic and Molecular Beam Sources 25 -- 2.4 Measurement of MBE Growth Parameters 28 -- 2.5 Surface Characterization Tools for MBE Growth 31 -- 2.6 Summary 37 -- Acknowledgments 37 -- References 38 -- 3. Migration-Enhanced Epitaxy and its Application 41 /Yoshiji Horikoshi -- 3.1 Introduction 41 -- 3.2 Toward Atomically Flat Surfaces in MBE 42 -- 3.3 Principle of MEE 44 -- 3.4 Growth of GaAs by MEE 48 -- 3.5 Incommensurate Deposition and Migration of Ga Atoms 49 -- 3.6 Application of MEE Deposition Sequence to Surface Research 50 -- 3.7 Application of MEE to Selective Area Epitaxy 51 -- 3.8 Summary 54 -- Acknowledgments 54 -- References 55 -- 4. Nanostructure Formation Process of MBE 57 /Koichi Yamaguchi -- 4.1 Introduction 57 -- 4.2 Growth of Quantum Wells 58 -- 4.3 Growth of Quantum Wires and Nanowires 60 -- 4.4 Growth of Quantum Dots 64 -- 4.5 Conclusion 71 -- References 72 -- 5. Ammonia Molecular Beam Epitaxy of III-Nitrides 73 /Micha N. Fireman and James S. Speck -- 5.1 Introduction 73 -- 5.2 III-Nitride Fundamentals 74 -- 5.3 Ammonia Molecular Beam Epitaxy 77 -- 5.4 Ternary Nitride Alloys and Doping 82 -- 5.5 Conclusions 86 -- References 86 -- Contents vii -- 6. Mechanism of Selective Area Growth by MBE 91 /Katsumi Kishino -- 6.1 Background 91 -- 6.2 Growth Parameters for Ti Mask SAG 92 -- 6.3 Initial Growth of Nanocolumns 94 -- 6.4 Nitrogen Flow Rate Dependence of SAG 95.
6.5 Diffusion Length of Ga Adatoms 96 -- 6.6 Fine Control of Nanocolumn Arrays by SAG 98 -- 6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size 100 -- 6.8 Nanotemplate SAG of AlGaN Nanocolumns 101 -- 6.9 Conclusions and Outlook 103 -- References 104 -- Part II MBE Technology for Electronic Devices Application 107 -- 7. MBE of III-Nitride Semiconductors for Electronic Devices 109 /Rolf J. Aidam, O. Ambacher, E. Diwo, B.-J. Godejohann, L. Kirste, T. Lim, R. Quay, and P. Waltereit -- 7.1 Introduction 109 -- 7.2 MBE Growth Techniques 110 -- 7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate 118 -- 7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate 123 -- 7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications 125 -- 7.6 Vertical Devices 130 -- References 132 -- 8. Molecular Beam Epitaxy for Steep Switching Tunnel FETs 135 /Salim El Kazzi -- 8.1 Introduction 135 -- 8.2 TFET Working Principle 136 -- 8.3 III-V Heterostructure for TFETs 136 -- 8.4 MBE for Beyond CMOS Technologies 138 -- 8.5 Doping 139 -- 8.6 Tunneling Interface Engineering 142 -- 8.7 MBE for III-V TFET Integration 143 -- 8.8 Conclusions and Perspectives 146 -- Acknowledgments 146 -- References 147 -- Part III MBE for Optoelectronic Devices 149 -- 9. Applications of III-V Semiconductor Quantum Dots in Optoelectronic Devices 151 /Kouichi Akahane and Yoshiaki Nakata -- 9.1 Introduction: Self-assembled Quantum Dots 151 -- 9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates 152 -- 9.3 InAs QD Optical Device Operating at Telecom Band (1.55 μm) 158 -- 9.4 Recent Progress in QD Lasers 164 -- 9.5 Summary 165 -- References 165 -- 10. Applications of III-V Semiconductors for Mid-infrared Lasers 169 /Yuichi Kawamura -- 10.1 Introduction 169 -- 10.2 GaSb-Based Lasers 170 -- 10.3 InP-Based Lasers 170 -- 10.4 InAs-Based Lasers 173 -- 10.5 Conclusion 174 -- References 174 -- 11. Molecular Beam Epitaxial Growth of Terahertz Quantum Cascade Lasers 175 /Harvey E. Beere and David A. Ritchie.
11.1 Introduction 175 -- 11.2 Epitaxial Challenges 179 -- References 189 -- 12. MBE of III-Nitride Heterostructures for Optoelectronic Devices 191 /C. Skierbiszewski, G. Muziol, H. Turski, M. Siekacz, K. Nowakowski-Szkudlarek, A. Feduniewicz- ̇ Zmuda, P. Wolny, and M. Sawicka -- 12.1 Introduction 191 -- 12.2 Low-Temperature Growth of Nitrides by PAMBE 192 -- 12.4 New Concepts of LDs with Tunnel Junctions 205 -- 12.5 Summary 206 -- Acknowledgments 207 -- References 207 -- 13. III-Nitride Quantum Dots for Optoelectronic Devices 211 /Pallab Bhattacharya, Thomas Frost, Shafat Jahangir, Saniya Deshpande, and Arnab Hazari -- 13.1 Introduction 211 -- 13.2 Molecular Beam Epitaxy of InGaN/GaN Self-organized Quantum Dots 212 -- 13.3 Quantum Dot Wavelength Converter White Light-Emitting Diode 220 -- 13.4 Quantum Dot Lasers 223 -- 13.5 Summary and Future Prospects 229 -- References 230 -- 14. Molecular-Beam Epitaxy of Antimonides for Optoelectronic Devices 233 /Eric Tournie -- 14.1 Introduction 233 -- 14.2 Epitaxy of Antimonides: A Brief Historical Survey 235 -- 14.3 Molecular-Beam Epitaxy of Antimonide 236 -- 14.4 Outlook 243 -- Acknowledgments 244 -- References 244 -- 15. III-V Semiconductors for Infrared Detectors 247 /P. C. Klipstein -- 15.1 Introduction 247 -- 15.2 InAsSb XBn Detectors 251 -- 15.3 T2SL XBp Detectors 255 -- 15.4 Conclusion 262 -- Acknowledgments 262 -- References 262 -- 16. MBE of III-V Semiconductors for Solar Cells 265 /Takeyoshi Sugaya -- 16.1 Introduction 265 -- 16.2 InGaP Solar Cells 266 -- 16.3 InGaAsP Solar Cells Lattice-Matched to GaAs 268 -- 16.4 InGaAsP Solar Cells Lattice-Matched to InP 271 -- 16.5 Growth of Tunnel Junctions for Multi-Junction Solar Cells 272 -- 16.6 Summary 277 -- References 277 -- Part IV Magnetic Semiconductors and Spintronics Devices 279 -- 17. III-V-Based Magnetic Semiconductors and Spintronics Devices 281 /Hiro Munekata -- 17.1 Introduction 281 -- 17.2 Hole-Mediated Ferromagnetism 282 -- 17.3 Molecular Beam Epitaxy and Materials Characterization 285.
17.4 Studies in View of Spintronics Applications 293 -- 17.5 Conclusions and Prospects 296 -- Acknowledgments 296 -- References 296 -- 18. III-Nitride Dilute Magnetic Semiconductors 299 /Yi-Kai Zhou and Hajime Asahi -- 18.1 Introduction 299 -- 18.2 Transition-Metal-Doped GaN 300 -- 18.3 Rare-Earth-Doped III-Nitrides 303 -- 18.4 Device Applications 309 -- 18.5 Summary 312 -- References 312 -- 19. MBE Growth, Magnetic and Magneto-optical Properties of II-VI DMSs 315 /Shinji Kuroda -- 19.1 II-VI DMSs Doped with Mn 315 -- 19.2 II-VI DMSs Doped with Cr and Fe 319 -- 19.3 ZnO-Based DMSs 323 -- References 325 -- 20. Ferromagnet/Semiconductor Heterostructures and Nanostructures Grown by Molecular Beam Epitaxy 329 /Masaaki Tanaka -- 20.1 Introduction 329 -- 20.2 MnAs on GaAs(001) and Si(001) Substrates 330 -- 20.3 GaAs:MnAs Granular Materials: Magnetoresistive Effects and Related Devices 337 -- 20.4 Summary 345 -- Acknowledgments 345 -- References 346 -- 21. MBE Growth of Ge-Based Diluted Magnetic Semiconductors 349 /Tianxiao Nie, Jianshi Tang, and Kang L. Wang -- 21.1 Introduction 349 -- 21.2 MBE Growth of MnxGe1−x Thin Film and Nanostructures 351 -- 21.3 Magnetic Properties of MnxGe1−x Thin Films and Nanostructures 355 -- 21.4 Electric-Field-Controlled Ferromagnetism and Magnetoresistance 359 -- 21.5 Conclusion 362 -- Acknowledgments 362 -- References 363 -- Part V Challenge of MBE to New Materials and New Researches 365 -- 22. Molecular Beam Epitaxial Growth of Topological Insulators 367 /Xiao Feng, Ke He, Xucun Ma, and Qi-Kun Xue -- 22.1 Introduction 367 -- 22.2 MBE Growth of Bi2Se3 Family Three-Dimensional Topological Insulators 368 -- 22.3 Defects in MBE-Grown Bi2Se3 Family TI Films 371 -- 22.4 Band Structure Engineering in Ternary Bi2Se3 Family TIs 373 -- 22.5 Magnetically Doped Bi2Se3 Family TIs 373 -- 22.6 MBE Growth of 2D TI Materials 375 -- 22.7 Summary 377 -- References 377 -- 23. Applications of Bismuth-Containing III-V Semiconductors in Devices 381 /Masahiro Yoshimoto.
23.1 Introduction 381 -- 23.2 Growth of GaAsBi 382 -- 23.3 Properties of GaAsBi 384 -- 23.4 Applications of GaAsBi 385 -- 23.5 Applications of Other Bi-Containing Semiconductors 390 -- 23.6 Summary 391 -- References 392 -- 24. MBE Growth of Graphene 395 /J. Marcelo J. Lopes -- 24.1 Introduction 395 -- 24.2 MBE of Graphene on Metals 398 -- 24.3 MBE of Graphene on Semiconductors 399 -- 24.4 MBE of Graphene on Oxides and Other Dielectrics 403 -- 24.5 Conclusions 407 -- Acknowledgments 408 -- References 408 -- 25. MBE Growth and Device Applications of Ga2O3 411 /Masataka Higashiwaki -- 25.1 Introduction 411 -- 25.2 Physical Properties of Ga2O3 411 -- 25.3 Ga2O3 Electronic Device Applications 414 -- 25.4 Melt-Grown Bulk Single Crystals 414 -- 25.5 Ga2O3 MBE Growth 414 -- 25.6 Transistor Applications 419 -- 25.7 Summary 421 -- References 421 -- 26. Molecular Beam Epitaxy for Oxide Electronics 423 /Abhinav Prakash and Bharat Jalan -- 26.1 Introduction 423 -- 26.2 Structure-Property Relationship in Perovskite Oxides 423 -- 26.3 Oxide Molecular Beam Epitaxy 430 -- 26.4 Recent Developments in Oxide MBE 435 -- 26.5 Outlook 443 -- 26.6 Summary 447 -- Acknowledgments 447 -- References 447 -- 27. In-situ STM Study of MBE Growth Process 453 /Shiro Tsukamoto -- 27.1 Introduction 453 -- 27.2 The Advantages of In-situ STM Observation for Understanding Growth Mechanisms 454 -- 27.3 In-situ STM Observation of InAs Growth on GaAs(001) by STMBE System 454 -- 27.4 In-situ STM Observation of Various Growths and Treatments on GaAs Surfaces by STMBE System 456 -- 27.5 Conclusion 460 -- References 460 -- 28. Heterovalent Semiconductor Structures and their Device Applications 463 /Yong-Hang Zhang -- 28.1 Introduction 463 -- 28.2 MBE Growth of Heterovalent Structures 465 -- 28.3 ZnTe and GaSb/ZnTe Heterovalent Distributed Bragg Reflector Structures Grown on GaSb 466 -- 28.4 CdTe/MgCdTe Structure and Heterovalent Devices Grown on InSb Substrates 468 -- 28.5 Single-Crystal CdTe/MgxCd1−xTe Solar Cells 474.
28.6 CdTe/InSb Two-Color Photodetectors 477 -- Acknowledgments 479 -- References 480 -- Index i1.
Summary: Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy "MBE" technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. . Includes chapters on the fundamentals of MBE. Covers new challenging researches in MBE and new technologies. Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners. Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

List of Contributors xv -- Series Preface xix -- Preface xxi -- Part I Fundamentals of MBE 1 -- 1. History of MBE 3 /Tom Foxon -- 1.1 Introduction 3 -- 1.2 The MBE Process 4 -- 1.3 Controlled n and p Doping 10 -- 1.4 Modified Growth Procedures 10 -- 1.5 Gas-Source MBE 11 -- 1.6 Low-Dimensional Structures 11 -- 1.7 III-V Nitrides, Phosphides, Antimonides and Bismides and Other Materials 13 -- 1.8 Early MBE-Grown Devices 18 -- 1.9 Summary 18 -- Acknowledgments 18 -- References 19 -- 2. General Description of MBE 23 /Yoshiji Horikoshi -- 2.1 Introduction 23 -- 2.2 High-Vacuum Chamber System 24 -- 2.3 Atomic and Molecular Beam Sources 25 -- 2.4 Measurement of MBE Growth Parameters 28 -- 2.5 Surface Characterization Tools for MBE Growth 31 -- 2.6 Summary 37 -- Acknowledgments 37 -- References 38 -- 3. Migration-Enhanced Epitaxy and its Application 41 /Yoshiji Horikoshi -- 3.1 Introduction 41 -- 3.2 Toward Atomically Flat Surfaces in MBE 42 -- 3.3 Principle of MEE 44 -- 3.4 Growth of GaAs by MEE 48 -- 3.5 Incommensurate Deposition and Migration of Ga Atoms 49 -- 3.6 Application of MEE Deposition Sequence to Surface Research 50 -- 3.7 Application of MEE to Selective Area Epitaxy 51 -- 3.8 Summary 54 -- Acknowledgments 54 -- References 55 -- 4. Nanostructure Formation Process of MBE 57 /Koichi Yamaguchi -- 4.1 Introduction 57 -- 4.2 Growth of Quantum Wells 58 -- 4.3 Growth of Quantum Wires and Nanowires 60 -- 4.4 Growth of Quantum Dots 64 -- 4.5 Conclusion 71 -- References 72 -- 5. Ammonia Molecular Beam Epitaxy of III-Nitrides 73 /Micha N. Fireman and James S. Speck -- 5.1 Introduction 73 -- 5.2 III-Nitride Fundamentals 74 -- 5.3 Ammonia Molecular Beam Epitaxy 77 -- 5.4 Ternary Nitride Alloys and Doping 82 -- 5.5 Conclusions 86 -- References 86 -- Contents vii -- 6. Mechanism of Selective Area Growth by MBE 91 /Katsumi Kishino -- 6.1 Background 91 -- 6.2 Growth Parameters for Ti Mask SAG 92 -- 6.3 Initial Growth of Nanocolumns 94 -- 6.4 Nitrogen Flow Rate Dependence of SAG 95.

6.5 Diffusion Length of Ga Adatoms 96 -- 6.6 Fine Control of Nanocolumn Arrays by SAG 98 -- 6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size 100 -- 6.8 Nanotemplate SAG of AlGaN Nanocolumns 101 -- 6.9 Conclusions and Outlook 103 -- References 104 -- Part II MBE Technology for Electronic Devices Application 107 -- 7. MBE of III-Nitride Semiconductors for Electronic Devices 109 /Rolf J. Aidam, O. Ambacher, E. Diwo, B.-J. Godejohann, L. Kirste, T. Lim, R. Quay, and P. Waltereit -- 7.1 Introduction 109 -- 7.2 MBE Growth Techniques 110 -- 7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate 118 -- 7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate 123 -- 7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications 125 -- 7.6 Vertical Devices 130 -- References 132 -- 8. Molecular Beam Epitaxy for Steep Switching Tunnel FETs 135 /Salim El Kazzi -- 8.1 Introduction 135 -- 8.2 TFET Working Principle 136 -- 8.3 III-V Heterostructure for TFETs 136 -- 8.4 MBE for Beyond CMOS Technologies 138 -- 8.5 Doping 139 -- 8.6 Tunneling Interface Engineering 142 -- 8.7 MBE for III-V TFET Integration 143 -- 8.8 Conclusions and Perspectives 146 -- Acknowledgments 146 -- References 147 -- Part III MBE for Optoelectronic Devices 149 -- 9. Applications of III-V Semiconductor Quantum Dots in Optoelectronic Devices 151 /Kouichi Akahane and Yoshiaki Nakata -- 9.1 Introduction: Self-assembled Quantum Dots 151 -- 9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates 152 -- 9.3 InAs QD Optical Device Operating at Telecom Band (1.55 μm) 158 -- 9.4 Recent Progress in QD Lasers 164 -- 9.5 Summary 165 -- References 165 -- 10. Applications of III-V Semiconductors for Mid-infrared Lasers 169 /Yuichi Kawamura -- 10.1 Introduction 169 -- 10.2 GaSb-Based Lasers 170 -- 10.3 InP-Based Lasers 170 -- 10.4 InAs-Based Lasers 173 -- 10.5 Conclusion 174 -- References 174 -- 11. Molecular Beam Epitaxial Growth of Terahertz Quantum Cascade Lasers 175 /Harvey E. Beere and David A. Ritchie.

11.1 Introduction 175 -- 11.2 Epitaxial Challenges 179 -- References 189 -- 12. MBE of III-Nitride Heterostructures for Optoelectronic Devices 191 /C. Skierbiszewski, G. Muziol, H. Turski, M. Siekacz, K. Nowakowski-Szkudlarek, A. Feduniewicz- ̇ Zmuda, P. Wolny, and M. Sawicka -- 12.1 Introduction 191 -- 12.2 Low-Temperature Growth of Nitrides by PAMBE 192 -- 12.4 New Concepts of LDs with Tunnel Junctions 205 -- 12.5 Summary 206 -- Acknowledgments 207 -- References 207 -- 13. III-Nitride Quantum Dots for Optoelectronic Devices 211 /Pallab Bhattacharya, Thomas Frost, Shafat Jahangir, Saniya Deshpande, and Arnab Hazari -- 13.1 Introduction 211 -- 13.2 Molecular Beam Epitaxy of InGaN/GaN Self-organized Quantum Dots 212 -- 13.3 Quantum Dot Wavelength Converter White Light-Emitting Diode 220 -- 13.4 Quantum Dot Lasers 223 -- 13.5 Summary and Future Prospects 229 -- References 230 -- 14. Molecular-Beam Epitaxy of Antimonides for Optoelectronic Devices 233 /Eric Tournie -- 14.1 Introduction 233 -- 14.2 Epitaxy of Antimonides: A Brief Historical Survey 235 -- 14.3 Molecular-Beam Epitaxy of Antimonide 236 -- 14.4 Outlook 243 -- Acknowledgments 244 -- References 244 -- 15. III-V Semiconductors for Infrared Detectors 247 /P. C. Klipstein -- 15.1 Introduction 247 -- 15.2 InAsSb XBn Detectors 251 -- 15.3 T2SL XBp Detectors 255 -- 15.4 Conclusion 262 -- Acknowledgments 262 -- References 262 -- 16. MBE of III-V Semiconductors for Solar Cells 265 /Takeyoshi Sugaya -- 16.1 Introduction 265 -- 16.2 InGaP Solar Cells 266 -- 16.3 InGaAsP Solar Cells Lattice-Matched to GaAs 268 -- 16.4 InGaAsP Solar Cells Lattice-Matched to InP 271 -- 16.5 Growth of Tunnel Junctions for Multi-Junction Solar Cells 272 -- 16.6 Summary 277 -- References 277 -- Part IV Magnetic Semiconductors and Spintronics Devices 279 -- 17. III-V-Based Magnetic Semiconductors and Spintronics Devices 281 /Hiro Munekata -- 17.1 Introduction 281 -- 17.2 Hole-Mediated Ferromagnetism 282 -- 17.3 Molecular Beam Epitaxy and Materials Characterization 285.

17.4 Studies in View of Spintronics Applications 293 -- 17.5 Conclusions and Prospects 296 -- Acknowledgments 296 -- References 296 -- 18. III-Nitride Dilute Magnetic Semiconductors 299 /Yi-Kai Zhou and Hajime Asahi -- 18.1 Introduction 299 -- 18.2 Transition-Metal-Doped GaN 300 -- 18.3 Rare-Earth-Doped III-Nitrides 303 -- 18.4 Device Applications 309 -- 18.5 Summary 312 -- References 312 -- 19. MBE Growth, Magnetic and Magneto-optical Properties of II-VI DMSs 315 /Shinji Kuroda -- 19.1 II-VI DMSs Doped with Mn 315 -- 19.2 II-VI DMSs Doped with Cr and Fe 319 -- 19.3 ZnO-Based DMSs 323 -- References 325 -- 20. Ferromagnet/Semiconductor Heterostructures and Nanostructures Grown by Molecular Beam Epitaxy 329 /Masaaki Tanaka -- 20.1 Introduction 329 -- 20.2 MnAs on GaAs(001) and Si(001) Substrates 330 -- 20.3 GaAs:MnAs Granular Materials: Magnetoresistive Effects and Related Devices 337 -- 20.4 Summary 345 -- Acknowledgments 345 -- References 346 -- 21. MBE Growth of Ge-Based Diluted Magnetic Semiconductors 349 /Tianxiao Nie, Jianshi Tang, and Kang L. Wang -- 21.1 Introduction 349 -- 21.2 MBE Growth of MnxGe1−x Thin Film and Nanostructures 351 -- 21.3 Magnetic Properties of MnxGe1−x Thin Films and Nanostructures 355 -- 21.4 Electric-Field-Controlled Ferromagnetism and Magnetoresistance 359 -- 21.5 Conclusion 362 -- Acknowledgments 362 -- References 363 -- Part V Challenge of MBE to New Materials and New Researches 365 -- 22. Molecular Beam Epitaxial Growth of Topological Insulators 367 /Xiao Feng, Ke He, Xucun Ma, and Qi-Kun Xue -- 22.1 Introduction 367 -- 22.2 MBE Growth of Bi2Se3 Family Three-Dimensional Topological Insulators 368 -- 22.3 Defects in MBE-Grown Bi2Se3 Family TI Films 371 -- 22.4 Band Structure Engineering in Ternary Bi2Se3 Family TIs 373 -- 22.5 Magnetically Doped Bi2Se3 Family TIs 373 -- 22.6 MBE Growth of 2D TI Materials 375 -- 22.7 Summary 377 -- References 377 -- 23. Applications of Bismuth-Containing III-V Semiconductors in Devices 381 /Masahiro Yoshimoto.

23.1 Introduction 381 -- 23.2 Growth of GaAsBi 382 -- 23.3 Properties of GaAsBi 384 -- 23.4 Applications of GaAsBi 385 -- 23.5 Applications of Other Bi-Containing Semiconductors 390 -- 23.6 Summary 391 -- References 392 -- 24. MBE Growth of Graphene 395 /J. Marcelo J. Lopes -- 24.1 Introduction 395 -- 24.2 MBE of Graphene on Metals 398 -- 24.3 MBE of Graphene on Semiconductors 399 -- 24.4 MBE of Graphene on Oxides and Other Dielectrics 403 -- 24.5 Conclusions 407 -- Acknowledgments 408 -- References 408 -- 25. MBE Growth and Device Applications of Ga2O3 411 /Masataka Higashiwaki -- 25.1 Introduction 411 -- 25.2 Physical Properties of Ga2O3 411 -- 25.3 Ga2O3 Electronic Device Applications 414 -- 25.4 Melt-Grown Bulk Single Crystals 414 -- 25.5 Ga2O3 MBE Growth 414 -- 25.6 Transistor Applications 419 -- 25.7 Summary 421 -- References 421 -- 26. Molecular Beam Epitaxy for Oxide Electronics 423 /Abhinav Prakash and Bharat Jalan -- 26.1 Introduction 423 -- 26.2 Structure-Property Relationship in Perovskite Oxides 423 -- 26.3 Oxide Molecular Beam Epitaxy 430 -- 26.4 Recent Developments in Oxide MBE 435 -- 26.5 Outlook 443 -- 26.6 Summary 447 -- Acknowledgments 447 -- References 447 -- 27. In-situ STM Study of MBE Growth Process 453 /Shiro Tsukamoto -- 27.1 Introduction 453 -- 27.2 The Advantages of In-situ STM Observation for Understanding Growth Mechanisms 454 -- 27.3 In-situ STM Observation of InAs Growth on GaAs(001) by STMBE System 454 -- 27.4 In-situ STM Observation of Various Growths and Treatments on GaAs Surfaces by STMBE System 456 -- 27.5 Conclusion 460 -- References 460 -- 28. Heterovalent Semiconductor Structures and their Device Applications 463 /Yong-Hang Zhang -- 28.1 Introduction 463 -- 28.2 MBE Growth of Heterovalent Structures 465 -- 28.3 ZnTe and GaSb/ZnTe Heterovalent Distributed Bragg Reflector Structures Grown on GaSb 466 -- 28.4 CdTe/MgCdTe Structure and Heterovalent Devices Grown on InSb Substrates 468 -- 28.5 Single-Crystal CdTe/MgxCd1−xTe Solar Cells 474.

28.6 CdTe/InSb Two-Color Photodetectors 477 -- Acknowledgments 479 -- References 480 -- Index i1.

Restricted to subscribers or individual electronic text purchasers.

Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy "MBE" technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. . Includes chapters on the fundamentals of MBE. Covers new challenging researches in MBE and new technologies. Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners. Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.

Also available in print.

Mode of access: World Wide Web

Description based on online resource; title from digital title page (viewed on March 11, 2019).

There are no comments for this item.

Log in to your account to post a comment.