Finding Communities in Social Networks Using Graph Embeddings (Record no. 88429)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 04400nam a22005535i 4500 |
001 - CONTROL NUMBER | |
control field | 978-3-031-60916-9 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240730172617.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240629s2024 sz | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
ISBN | 9783031609169 |
-- | 978-3-031-60916-9 |
082 04 - CLASSIFICATION NUMBER | |
Call Number | 300.00285 |
100 1# - AUTHOR NAME | |
Author | Alfaqeeh, Mosab. |
245 10 - TITLE STATEMENT | |
Title | Finding Communities in Social Networks Using Graph Embeddings |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. 2024. |
300 ## - PHYSICAL DESCRIPTION | |
Number of Pages | IX, 177 p. 90 illus., 34 illus. in color. |
490 1# - SERIES STATEMENT | |
Series statement | Lecture Notes in Social Networks, |
505 0# - FORMATTED CONTENTS NOTE | |
Remark 2 | Chapter 1: Introduction -- Chapter 2: Background -- Chapter 3: Building blocks -- Chapter 4: Social network data -- Chapter 5: Methodology -- Chapter 6: Results and validation -- Chapter 7: Conclusions. |
520 ## - SUMMARY, ETC. | |
Summary, etc | Community detection in social networks is an important but challenging problem. This book develops a new technique for finding communities that uses both structural similarity and attribute similarity simultaneously, weighting them in a principled way. The results outperform existing techniques across a wide range of measures, and so advance the state of the art in community detection. Many existing community detection techniques base similarity on either the structural connections among social-network users, or on the overlap among the attributes of each user. Either way loses useful information. There have been some attempts to use both structure and attribute similarity but success has been limited. We first build a large real-world dataset by crawling Instagram, producing a large set of user profiles. We then compute the similarity between pairs of users based on four qualitatively different profile properties: similarity of language used in posts, similarity of hashtags used (which requires extraction of content from them), similarity of images displayed (which requires extraction of what each image is 'about'), and the explicit connections when one user follows another. These single modality similarities are converted into graphs. These graphs have a common node set (the users) but different sets a weighted edges. These graphs are then connected into a single larger graph by connecting the multiple nodes representing the same user by a clique, with edge weights derived from a lazy random walk view of the single graphs. This larger graph can then be embedded in a geometry using spectral techniques. In the embedding, distance corresponds to dissimilarity so geometric clustering techniques can be used to find communities. The resulting communities are evaluated using the entire range of current techniques, outperforming all of them. Topic modelling is also applied to clusters to show that they genuinely represent users with similar interests. This can form the basis for applications such as online marketing, or key influence selection. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
General subdivision | Data processing. |
700 1# - AUTHOR 2 | |
Author 2 | Skillicorn, David B. |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://doi.org/10.1007/978-3-031-60916-9 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | eBooks |
264 #1 - | |
-- | Cham : |
-- | Springer Nature Switzerland : |
-- | Imprint: Springer, |
-- | 2024. |
336 ## - | |
-- | text |
-- | txt |
-- | rdacontent |
337 ## - | |
-- | computer |
-- | c |
-- | rdamedia |
338 ## - | |
-- | online resource |
-- | cr |
-- | rdacarrier |
347 ## - | |
-- | text file |
-- | |
-- | rda |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Social sciences |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Machine learning. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Application software. |
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Computer Application in Social and Behavioral Sciences. |
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Machine Learning. |
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Computer and Information Systems Applications. |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE | |
-- | 2190-5436 |
912 ## - | |
-- | ZDB-2-SCS |
912 ## - | |
-- | ZDB-2-SXCS |
No items available.