Fourier analysis on finite groups with applications in signal processing and system design / (Record no. 73795)

000 -LEADER
fixed length control field 08972nam a2201045 i 4500
001 - CONTROL NUMBER
control field 5237943
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205619.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2005 njua ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1601193769
-- livre �aelectronique
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780471745433
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781601193766
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 621.382/2
100 1# - AUTHOR NAME
Author Stankovi�ac, Radomir S.,
245 10 - TITLE STATEMENT
Title Fourier analysis on finite groups with applications in signal processing and system design /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xxiii, 236 pages) :
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Acknowledgments -- Acronyms -- 1 Signals and Their Mathematical Models -- 1.1 Systems -- 1.2 Signals -- 1.3 Mathematical Models of Signals -- References -- 2 Fourier Analysis -- 2.1 Representations of Groups -- 2.1.1 Complete Reducibility -- 2.2 Fourier Transform on Finite Groups -- 2.3 Properties of the Fourier Transform -- 2.4 Matrix Interpretation of the Fourier Transform on Finite Non-Abelian Groups -- 2.5 Fast Fourier Transform on Finite Non-Abelian Groups -- References -- 3 Matrix Interpretation of the FFT -- 3.1 Matrix Interpretation of FFT on Finite Non-Abelian Groups -- 3.2 Illustrative Examples -- 3.3 Complexity of the FFT -- 3.3.1 Complexity of Calculations of the FFT -- 3.3.2 Remarks on Programming Implememtation of FFT -- 3.4 FFT Through Decision Diagrams -- 3.4.1 Decision Diagrams -- 3.4.2 FFT on Finite Non-Abelian Groups Through DDs -- 3.4.3 MMTDs for the Fourier Spectrum -- 3.4.4 Complexity of DDs Calculation Methods -- References -- 4 Optimization of Decision Diagrams -- 4.1 Reduction Possibilities in Decision Diagrams -- 4.2 Group-Theoretic Interpretation of DD -- 4.3 Fourier Decision Diagrams -- 4.3.1 Fourier Decision Trees -- 4.3.2 Fourier Decision Diagrams -- 4.4 Discussion of Different Decompositions -- 4.4.1 Algorithm for Optimization of DDs -- 4.5 Representation of Two-Variable Function Generator -- 4.6 Representation of Adders by Fourier DD -- 4.7 Representation of Multipliers by Fourier DD -- 4.8 Complexity of NADD -- 4.9 Fourier DDs with Preprocessing -- 4.9.1 Matrix-valued Functions -- 4.9.2 Fourier Transform for Matrix-Valued Functions -- 4.10 Fourier Decision Trees with Preprocessing -- 4.11 Fourier Decision Diagrams with Preprocessing -- 4.12 Construction of FNAPDD -- 4.13 Algorithm for Construction of FNAPDD -- 4.13.1 Algorithm for Representation -- 4.14 Optimization of FNAPDD -- References -- 5 Functional Expressions on Quaternion Groups -- 5.1 Fourier Expressions on Finite Dyadic Groups -- 5.1.1 Finite Dyadic Groups -- 5.2 Fourier Expressions on Q2.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.3 Arithmetic Expressions -- 5.4 Arithmetic Expressions from Walsh Expansions -- 5.5 Arithmetic Expressions on Q2 -- 5.5.1 Arithmetic Expressions and Arithmetic-Haar Expressions -- 5.5.2 Arithmetic-Haar Expressions and Kronecker Expressions -- 5.6 Different Polarity Polynomials Expressions -- 5.6.1 Fixed-Polarity Fourier Expressions in C(Q2) -- 5.6.2 Fixed-Polarity Arithmetic-Haar�Expressions -- 5.7 Calculation of the Arithmetic-Haar Coefficients -- 5.7.1 FFT-like Algorithm -- 5.7.2 Calculation of Arithmetic-Haar Coefficients Through Decision Diagrams -- References -- 6 Gibbs Derivatives on Finite Groups -- 6.1 Definition and Properties of Gibbs Derivatives on Finite Non-Abelian Groups -- 6.2 Gibbs Anti-Derivative -- 6.3 Partial Gibbs Derivatives -- 6.4 Gibbs Differential Equations -- 6.5 Matrix Interpretation of Gibbs Derivatives -- 6.6 Fast Algorithms for Calculation of Gibbs Derivatives on Finite Groups -- 6.6.1 Complexity of Calculation of Gibbs Derivatives -- 6.7 Calculation of Gibbs Derivatives Through DDs -- 6.7.1 Calculation of Partial Gibbs Derivatives.� -- References -- 7 Linear Systems on Finite Non-Abelian Groups -- 7.1 Linear Shift-Invariant Systems on Groups -- 7.2 Linear Shift-Invariant Systems on Finite Non-Abelian Groups -- 7.3 Gibbs Derivatives and Linear Systems -- 7.3.1 Discussion -- References -- 8 Hilbert Transform on Finite Groups -- 8.1 Some Results of Fourier Analysis on Finite Non-Abelian Groups -- 8.2 Hilbert Transform on Finite Non-Abelian Groups -- 8.3 Hilbert Transform in Finite Fields -- References -- Index.
520 ## - SUMMARY, ETC.
Summary, etc Discover applications of Fourier analysis on finite non-Abelian groups The majority of publications in spectral techniques consider Fourier transform on Abelian groups. However, non-Abelian groups provide notable advantages in efficient implementations of spectral methods. Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design examines aspects of Fourier analysis on finite non-Abelian groups and discusses different methods used to determine compact representations for discrete functions providing for their efficient realizations and related applications. Switching functions are included as an example of discrete functions in engineering practice. Additionally, consideration is given to the polynomial expressions and decision diagrams defined in terms of Fourier transform on finite non-Abelian groups. A solid foundation of this complex topic is provided by beginning with a review of signals and their mathematical models and Fourier analysis. Next, the book examines recent achievements and discoveries in: . Matrix interpretation of the fast Fourier transform. Optimization of decision diagrams. Functional expressions on quaternion groups. Gibbs derivatives on finite groups. Linear systems on finite non-Abelian groups. Hilbert transform on finite groups Among the highlights is an in-depth coverage of applications of abstract harmonic analysis on finite non-Abelian groups in compact representations of discrete functions and related tasks in signal processing and system design, including logic design. All chapters are self-contained, each with a list of references to facilitate the development of specialized courses or self-study. With nearly 100 illustrative figures and fifty tables, this is an excellent textbook for graduate-level students and researchers in signal processing, logic design, and system theory-as well as the more general topics of computer science and applied mathematics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Signal processing
General subdivision Mathematics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Fourier analysis.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Non-Abelian groups.
700 1# - AUTHOR 2
Author 2 Moraga, Claudio.
700 1# - AUTHOR 2
Author 2 Astola, Jaakko T.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237943
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Piscataway, New Jersey :
-- IEEE Press,
-- c2005.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2005]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Approximation methods
695 ## -
-- Books
695 ## -
-- Boolean functions
695 ## -
-- Channel coding
695 ## -
-- Computational modeling
695 ## -
-- Convolution
695 ## -
-- Data structures
695 ## -
-- Decision trees
695 ## -
-- Differential equations
695 ## -
-- Digital filters
695 ## -
-- Discrete Fourier transforms
695 ## -
-- Eigenvalues and eigenfunctions
695 ## -
-- Error probability
695 ## -
-- Fast Fourier transforms
695 ## -
-- Filtering
695 ## -
-- Finite element methods
695 ## -
-- Fourier transforms
695 ## -
-- Galois fields
695 ## -
-- Graphics
695 ## -
-- Harmonic analysis
695 ## -
-- Indexes
695 ## -
-- Integrated circuits
695 ## -
-- Kernel
695 ## -
-- Linear systems
695 ## -
-- Linearity
695 ## -
-- Mathematical model
695 ## -
-- Optimization
695 ## -
-- Polynomials
695 ## -
-- Quaternions
695 ## -
-- Signal processing
695 ## -
-- Signal processing algorithms
695 ## -
-- Sparse matrices
695 ## -
-- Switches
695 ## -
-- Symmetric matrices
695 ## -
-- Topology
695 ## -
-- Vectors

No items available.