Electromyography : (Record no. 73769)

000 -LEADER
fixed length control field 12594nam a2201357 i 4500
001 - CONTROL NUMBER
control field 5237323
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205612.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2005 njua ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780471678380
-- ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print. ed.
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print. ed.
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 00 - CLASSIFICATION NUMBER
Call Number 616.7/407547
245 00 - TITLE STATEMENT
Title Electromyography :
Sub Title physiology, engineering, and noninvasive applications /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xxii, 494 pages) :
490 1# - SERIES STATEMENT
Series statement IEEE press series on biomedical engineering ;
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Introduction -- Contributors -- 1 BASIC PHYSIOLOGY AND BIOPHYSICS OF EMG SIGNAL GENERATION (T. Moritani, D. Stegeman, R. Merletti) -- 1.1 Introduction -- 1.2 Basic Physiology of Motor Control and Muscle Contraction -- 1.3 Basic Electrophysiology of the Muscle Cell Membrane -- References -- 2 NEEDLE AND WIRE DETECTION TECHNIQUES (J. V. Trontelj, J. Jabre, M. Mihelin) -- 2.1 Anatomical and Physiological Background of Intramuscular Recording -- 2.2 Recording Characteristics of Needle Electrodes -- 2.3 Conventional Needle EMG -- 2.4 Special Needle Recording Techniques -- 2.5 Physical Characteristics of Needle EMG Signals -- 2.6 Recording Equipment -- References -- 3 DECOMPOSITION OF INTRAMUSCULAR EMG SIGNALS (D. W. Stashuk, D. Farina, K. Sgaard) -- 3.1 Introduction -- 3.2 Basic Steps for EMG Signal Decomposition -- 3.3 Evaluation of Performance of EMG Signal Decomposition Algorithms -- 3.4 Applications of Results of the Decomposition of an Intramuscular EMG Signal -- 3.5 Conclusions -- References -- 4 BIOPHYSICS OF THE GENERATION OF EMG SIGNALS (D. Farina, R. Merletti, D. F. Stegeman) -- 4.1 Introduction -- 4.2 EMG Signal Generation -- 4.3 Crosstalk -- 4.4 Relationships between Surface EMG Features and Developed Force -- 4.5 Conclusions -- References -- 5 DETECTION AND CONDITIONING OF THE SURFACE EMG SIGNAL (R. Merletti, H. Hermens) -- 5.1 Introduction -- 5.2 Electrodes: Their Transfer Function -- 5.3 Electrodes: Their Impedance, Noise, and dc Voltages -- 5.4 Electrode Configuration, Distance, Location -- 5.5 EMG Front-End Amplifiers -- 5.6 EMG Filters: Specifications -- 5.7 Sampling and A/D Conversion -- 5.8 European Recommendations on Electrodes and Electrode Locations -- References -- 6 SINGLE-CHANNEL TECHNIQUES FOR INFORMATION EXTRACTION FROM THE SURFACE EMG SIGNAL (E. A. Clancy, D. Farina, G. Filligoi) -- 6.1 Introduction -- 6.2 Spectral Estimation of Deterministic Signals and Stochastic Processes -- 6.3 Basic Surface EMG Signal Models -- 6.4 Surface EMG Amplitude Estimation.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 6.5 Extraction of Information in Frequency Domain from Surface EMG Signals -- 6.6 Joint Analysis of EMG Spectrum and Amplitude (JASA) -- 6.7 Recurrence Quantification Analysis of Surface EMG Signals -- 6.8 Conclusions -- References -- 7 MULTI-CHANNEL TECHNIQUES FOR INFORMATION EXTRACTION FROM THE SURFACE EMG (D. Farina, R. Merletti, C. Disselhorst-Klug) -- 7.1 Introduction -- 7.2 Spatial Filtering -- 7.3 Spatial Sampling -- 7.4 Estimation of Muscle-Fiber Conduction Velocity -- 7.5 Conclusions -- References -- 8 EMG MODELING AND SIMULATION (D. F. Stegeman, R. Merletti, H. J. Hermens) -- 8.1 Introduction -- 8.2 Phenomenological Models of EMG -- 8.3 Elements of Structure-Based SEMG Models -- 8.4 Basic Assumptions -- 8.5 Elementary Sources of Bioelectric Muscle Activity -- 8.6 Fiber Membrane Activity Profiles, Their Generation, Propagation, and Extinction -- 8.7 Structure of the Motor Unit -- 8.8 Volume Conduction -- 8.9 Modeling EMG Detection Systems -- 8.10 Modeling Motor Unit Recruitment and Firing Behavior -- 8.11 Inverse Modeling -- 8.12 Modeling of Muscle Fatigue -- 8.13 Other Applications of Modeling -- 8.14 Conclusions -- References -- 9 MYOELECTRIC MANIFESTATIONS OF MUSCLE FATIGUE (R. Merletti, A. Rainoldi, D. Farina) -- 9.1 Introduction -- 9.2 Definitions and Sites of Neuromuscular Fatigue -- 9.3 Assessment of Muscle Fatigue -- 9.4 How Fatigue Is Reflected in Surface EMG Variables -- 9.5 Myoelectric Manifestations of Muscle Fatigue in Isometric Voluntary Contractions -- 9.6 Fiber Typing and Myoelectric Manifestations of Muscle Fatigue -- 9.7 Factors Affecting Surface EMG Variable -- 9.8 Repeatability of Estimates of EMG Variables and Fatigue Indexes -- 9.9 Conclusions -- References -- 10 ADVANCED SIGNAL PROCESSING TECHNIQUES (D. Zazula, S. Karlsson, C. Doncarli) -- 10.1 Introduction -- 10.2 Theoretical Background -- 10.3 Decomposition of EMG Signals -- 10.4 Applications to Monitoring Myoelectric Manifestations of Muscle Fatigue -- 10.5 Conclusions -- Acknowledgment.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 References -- 11 SURFACE MECHANOMYOGRAM (C. Orizio) -- 11.1 The Mechanomyogram (MMG): General Aspects during Stimulated and Voluntary Contraction -- 11.2 Detection Techniques and Sensors Comparison -- 11.3 Comparison between Different Detectors -- 11.4 Simulation -- 11.5 MMG Versus Force: Joint and Adjunct Information Content -- 11.6 MMG Versus EMG: Joint and Adjunct Information Content -- 11.7 Area of Application -- References -- 12 SURFACE EMG APPLICATIONS IN NEUROLOGY (M. J. Zwarts, D. F. Stegeman, J. G. van Dijk) -- 12.1 Introduction -- 12.2 Central Nervous System Disorders and SEMG -- 12.3 Compound Muscle Action Potential and Motor Nerve Conduction -- 12.4 CMAP Generation -- 12.5 Clinical Applications -- 12.6 Pathological Fatigue -- 12.7 New Avenues: High-Density Multichannel Recording -- 12.8 Conclusion -- References -- 13 APPLICATIONS IN ERGONOMICS (G. M. Hgg, B. Melin, R. Kadefors) -- 13.1 Historic Perspective -- 13.2 Basic Workload Concepts in Ergonomics -- 13.3 Basic Surface EMG Signal Processing -- 13.4 Load Estimation and SEMG Normalization and Calibration -- 13.5 Amplitude Data Reduction over Time -- 13.6 Electromyographic Signal Alterations Indicating Muscle Fatigue in Ergonomics -- 13.7 SEMG Biofeedback in Ergonomics -- 13.8 Surface EMG and Musculoskeletal Disorders -- 13.9 Psychological Effects on EMG -- References -- 14 APPLICATIONS IN EXERCISE PHYSIOLOGY (F. Felici) -- 14.1 Introduction -- 14.2 A Few "Tips and Tricks" -- 14.3 Time and Frequency Domain Analysis of sEMG: What Are We Looking For? -- 14.4 Application of sEMG to the Study of Exercise -- 14.5 Strength and Power Training -- 14.6 Muscle Damage Studied by Means of sEMG -- References -- 15 APPLICATIONS IN MOVEMENT AND GAIT ANALYSIS (C. Frigo, R. Shiavi) -- 15.1 Relevance of Electromyography in Kinesiology -- 15.2 Typical Acquisition Settings -- 15.3 Study of Motor Control Strategies -- 15.4 Investigation on the Mechanical Effect of Muscle Contraction -- 15.5 Gait Analysis -- 15.6 Identification of Pathophysiologic Factors.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 15.7 Workload Assessment in Occupational Biomechanics -- 15.8 Biofeedback -- 15.9 The Linear Envelope -- 15.10 Information Enhancement through Multifactorial Analysis -- References -- 16 APPLICATIONS IN REHABILITATION MEDICINE AND RELATED FIELDS (A. Rainoldi, R. Casale, P. Hodges, G. Jull) -- 16.1 Introduction -- 16.2 Electromyography as a Tool in Back and Neck Pain -- 16.3 EMG of the Pelvic Floor: A New Challenge in Neurological Rehabilitation -- 16.4 Age-Related Effects on EMG Assessment of Muscle Physiology -- 16.5 Surface EMG and Hypobaric Hipoxia -- 16.6 Microgravity Effects on Neuromuscular System -- References -- 17 BIOFEEDBACK APPLICATIONS (J. R. Cram) -- 17.1 Introduction -- 17.2 Biofeedback Application to Impairment Syndromes -- 17.3 SEMG Biofeedback Techniques -- 17.4 Summary -- References -- 18 CONTROL OF POWERED UPPER LIMB PROSTHESES (P. A. Parker, K. B. Englehart, B. S. Hudgins) -- 18.1 Introduction -- 18.2 Myoelectric Signal as a Control Input -- 18.3 Conventional Myoelectric Control -- 18.4 Emerging MEC Strategies -- 18.5 Summary -- References -- Index.
520 ## - SUMMARY, ETC.
Summary, etc A complete overview of electromyography with contributions from pacesetters in the field In recent years, insights from the field of engineering have illuminated the vast potential of electromyography (EMG) in biomedical technology. Featuring contributions from key innovators working in the field today, Electromyography reveals the broad applications of EMG data in areas as diverse as neurology, ergonomics, exercise physiology, rehabilitation, movement analysis, biofeedback, and myoelectric control of prosthesis. Bridging the gap between engineering and physiology, this pioneering volume explains the essential concepts needed to detect, understand, process, and interpret EMG signals using non-invasive electrodes. Electromyography shows how engineering tools such as models and signal processing methods can greatly augment the insight provided by surface EMG signals. Topics covered include: . Basic physiology and biophysics of EMG generation. Needle and surface electrode detection techniques. Signal conditioning and processing issues. Single- and multi-channel techniques for information extraction. Development and application of physical models. Advanced signal processing techniques With its fresh engineering perspective, Electromyography offers physiologists, medical professionals, and students in biomedical engineering a new window into the far-reaching possibilities of this dynamic technology.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Electromyography.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Muscles.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Neuromuscular diseases
General subdivision Diagnosis.
700 1# - AUTHOR 2
Author 2 Merletti, Roberto.
700 1# - AUTHOR 2
Author 2 Parker, Philip
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237323
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley-Interscience,
-- c2004.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2005]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Adaptation model
695 ## -
-- Autoregressive processes
695 ## -
-- Back
695 ## -
-- Biochemistry
695 ## -
-- Biological control systems
695 ## -
-- Biomembranes
695 ## -
-- Calibration
695 ## -
-- Central nervous system
695 ## -
-- Computational modeling
695 ## -
-- Conductors
695 ## -
-- Control systems
695 ## -
-- Correlation
695 ## -
-- Data mining
695 ## -
-- Diseases
695 ## -
-- Electric potential
695 ## -
-- Electrodes
695 ## -
-- Electromyography
695 ## -
-- Ergonomics
695 ## -
-- Estimation
695 ## -
-- Face
695 ## -
-- Fatigue
695 ## -
-- Force
695 ## -
-- Frequency domain analysis
695 ## -
-- Geometry
695 ## -
-- Head
695 ## -
-- Humans
695 ## -
-- Impedance
695 ## -
-- Indexes
695 ## -
-- Joints
695 ## -
-- Kinematics
695 ## -
-- Laboratories
695 ## -
-- Legged locomotion
695 ## -
-- MIMO
695 ## -
-- Manganese
695 ## -
-- Markov processes
695 ## -
-- Mathematical model
695 ## -
-- Measurement by laser beam
695 ## -
-- Motor drives
695 ## -
-- Muscles
695 ## -
-- Needles
695 ## -
-- Neuromuscular
695 ## -
-- Neurons
695 ## -
-- Noise
695 ## -
-- Numerical models
695 ## -
-- Pain
695 ## -
-- Process control
695 ## -
-- Prosthetics
695 ## -
-- Sensors
695 ## -
-- Shape
695 ## -
-- Signal resolution
695 ## -
-- Skin
695 ## -
-- Solid modeling
695 ## -
-- Spine
695 ## -
-- Stochastic processes
695 ## -
-- Stress
695 ## -
-- Surface emitting lasers
695 ## -
-- Surface impedance
695 ## -
-- Surface morphology
695 ## -
-- Surface treatment
695 ## -
-- Tendons
695 ## -
-- Time frequency analysis
695 ## -
-- Traction motors
695 ## -
-- Transducers

No items available.