Nonlinear dynamic modeling of physiological systems / (Record no. 59687)

000 -LEADER
fixed length control field 07668nam a2201201 i 4500
001 - CONTROL NUMBER
control field 5769528
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200421114119.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2004 njua ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780471679370
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
100 1# - AUTHOR NAME
Author Marmarelis, Vasilis Z.,
245 10 - TITLE STATEMENT
Title Nonlinear dynamic modeling of physiological systems /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xvi, 541 pages) :
490 1# - SERIES STATEMENT
Series statement IEEE Press series on biomedical engineering ;
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Prologue -- 1 Introduction -- 1.1 Purpose of this Book -- 1.2 Advocated Approach -- 1.3 The Problem of System Modeling in Physiology -- 1.4 Types of Nonlinear Models of Physiological Systems -- 2 Nonparametric Modeling -- 2.1 Volterra Models -- 2.2 Wiener Models -- 2.3 Efficient Volterra Kernel Estimation -- 2.4 Analysis of Estimation Errors -- 3 Parametric Modeling -- 3.1 Basic Parametric Model Forms and Estimation Procedures -- 3.2 Volterra Kernels of Nonlinear Differential Equations -- 3.3 Discrete-Time Volterra Kernels of NARMAX Models -- 3.4 From Volterra Kernel Measurements to Parametric Models -- 3.5 Equivalence Between Continuous and Discrete Parametric Models -- 4 Modular and Connectionist Modeling -- 4.1 Modular Form of Nonparametric Models -- 4.2 Connectionist Models -- 4.3 The Laguerre-Volterra Network -- 4.4 The VWM Model -- 5 A Practitioner's Guide -- 5.1 Practical Considerations and Experimental Requirements -- 5.2 Preliminary Tests and Data Preparation -- 5.3 Model Specification and Estimation -- 5.4 Model Validation and Interpretation -- 5.5 Outline of Step-by-Step Procedure -- 6 Selected Applications -- 6.1 Neurosensory Systems -- 6.2 Cardiovascular System -- 6.3 Renal System -- 6.4 Metabolic-Endocrine System -- 7 Modeling of Multiinput/Multioutput Systems -- 7.1 The Two-Input Case -- 7.2 Applications of Two-Input Modeling to Physiological Systems -- 7.3 The Multiinput Case -- 7.4 Spatiotemporal and Spectrotemporal Modeling -- 8 Modeling of Neuronal Systems -- 8.1 A General Model of Membrane and Synaptic Dynamics -- 8.2 Functional Integration in the Single Neuron -- 8.3 Neuronal Systems with Point-Process Inputs -- 8.4 Modeling of Neuronal Ensembles -- 9 Modeling of Nonstationary Systems -- 9.1 Quasistationary and Recursive Tracking Methods -- 9.2 Kernel Expansion Method -- 9.3 Network-Based Methods -- 9.4 Applications to Nonstationary Physiological Systems -- 10 Modeling of Closed-Loop Systems -- 10.1 Autoregressive Form of Closed-Loop Model -- 10.2 Network Model Form of Closed-Loop Systems.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Appendix I: Function Expansions -- Appendix II: Gaussian White Noise -- Appendix III: Construction of the Wiener Series -- Appendix IV: Stationarity, Ergodicity, and Autocorrelation Functions of Random Processes -- References -- Index.
520 ## - SUMMARY, ETC.
Summary, etc A practical approach to obtaining nonlinear dynamic models from stimulus-response dataNonlinear modeling of physiological systems from stimulus-response data is a long-standing problem that has substantial implications for many scientific fields and associated technologies. These disciplines include biomedical engineering, signal processing, neural networks, medical imaging, and robotics and automation. Addressing the needs of a broad spectrum of scientific and engineering researchers, this book presents practicable, yet mathematically rigorous methodologies for constructing dynamic models of physiological systems.Nonlinear Dynamic Modeling of Physiological Systems provides the most comprehensive treatment of the subject to date. Starting with the mathematical background upon which these methodologies are built, the book presents the methodologies that have been developed and used over the past thirty years. The text discusses implementation and computational issues and gives illustrative examples using both synthetic and experimental data. The author discusses the various modeling approaches-nonparametric, including the Volterra and Wiener models; parametric; modular; and connectionist-and clearly identifies their comparative advantages and disadvantages along with the key criteria that must guide successful practical application. Selected applications covered include neural and sensory systems, cardiovascular and renal systems, and endocrine and metabolic systems. This lucid and comprehensive text is a valuable reference and guide for the community of scientists and engineers who wish to develop and apply the skills of nonlinear modeling to physiological systems.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision Mathematical models.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5769528
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley-Interscience,
-- c2004
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2004]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Physiology
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Nonlinear theories.
695 ## -
-- Accuracy
695 ## -
-- Adaptation models
695 ## -
-- Anisotropic magnetoresistance
695 ## -
-- Approximation error
695 ## -
-- Approximation methods
695 ## -
-- Autoregressive processes
695 ## -
-- Bandwidth
695 ## -
-- Bibliographies
695 ## -
-- Biomembranes
695 ## -
-- Broadband communication
695 ## -
-- Complexity theory
695 ## -
-- Computational modeling
695 ## -
-- Context
695 ## -
-- Context modeling
695 ## -
-- Correlation
695 ## -
-- Data models
695 ## -
-- Difference equations
695 ## -
-- Dynamic range
695 ## -
-- Eigenvalues and eigenfunctions
695 ## -
-- Electric potential
695 ## -
-- Equations
695 ## -
-- Estimation
695 ## -
-- Filter banks
695 ## -
-- Firing
695 ## -
-- Fourier transforms
695 ## -
-- Gain
695 ## -
-- Gaussian processes
695 ## -
-- Genetic expression
695 ## -
-- Hilbert space
695 ## -
-- Indexes
695 ## -
-- Joints
695 ## -
-- Kernel
695 ## -
-- Linear regression
695 ## -
-- Linearity
695 ## -
-- Mathematical model
695 ## -
-- Minimization
695 ## -
-- Modeling
695 ## -
-- Nerve fibers
695 ## -
-- Neurons
695 ## -
-- Noise
695 ## -
-- Nonlinear dynamical systems
695 ## -
-- Nonlinear systems
695 ## -
-- Parametric statistics
695 ## -
-- Physiology
695 ## -
-- Polynomials
695 ## -
-- Predictive models
695 ## -
-- Probabilistic logic
695 ## -
-- Radiation detectors
695 ## -
-- Random processes
695 ## -
-- Retina
695 ## -
-- Sections
695 ## -
-- Taylor series
695 ## -
-- Time varying systems
695 ## -
-- Training
695 ## -
-- White noise

No items available.