Liu, Joseph T. C.,

Mach wave and acoustical wave structure in nonequilibrium gas-particle flows / Joseph T. C. Liu. - 1 online resource (66 pages) : digital, PDF file(s). - Cambridge elements. Elements in aerospace engineering, 2631-7850 . - Cambridge elements. Elements in aerospace engineering, .

Title from publisher's bibliographic system (viewed on 11 Oct 2021).

In this Element, the gas-particle flow problem is formulated with momentum and thermal slip that introduces two relaxation times. Starting from acoustical propagation in a medium in equilibrium, the relaxation-wave equation in airfoil coordinates is derived though a Galilean transformation for uniform flow. Steady planar small perturbation supersonic flow is studied in detail according to Whitham's higher-order waves. The signals owing to wall boundary conditions are damped along the frozen-Mach wave, and are both damped and diffusive along an effective-intermediate Mach wave and diffusive along the equilibrium Mach wave where the bulk of the disturbance propagates. The surface pressure coefficient is obtained exactly for small-disturbance theory, but it is considerably simplified for the small particle-to-gas mass loading approximation, equivalent to a simple-wave approximation. Other relaxation-wave problems are discussed. Martian dust-storm properties in terms of gas-particle flow parameters are estimated.

9781108990585 (ebook)


Gas dynamics.
Gas flow.
Shock waves.
Sound-waves.
Nonequilibrium thermodynamics.

QC168 / .L59 2021

533.2